Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torchvision import models, transforms | |
from PIL import Image | |
# Set the device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Define the class names | |
class_names = ['COVID', 'Lung_Opacity', 'No_Tumor', 'Normal', 'Tumor', 'Viral_Pneumonia'] | |
# Load the model | |
def load_model(model_path, num_classes): | |
model = models.efficientnet_b0(weights=None) | |
model.classifier = torch.nn.Sequential( | |
torch.nn.Dropout(p=0.2, inplace=True), | |
torch.nn.Linear(in_features=1280, out_features=num_classes, bias=True) | |
) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
model.eval() | |
return model | |
model_path = 'transfer_balanced_learning_model.pth' | |
num_classes = len(class_names) | |
model = load_model(model_path, num_classes) | |
# Function to make predictions | |
def predict(image): | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
image = preprocess(image) | |
input_batch = image.unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_batch) | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
_, predicted_idx = torch.max(output, 1) | |
predicted_label = class_names[predicted_idx.item()] | |
return {class_names[i]: float(prob) for i, prob in enumerate(probabilities)}, predicted_label | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=len(class_names)), | |
gr.Label(label="Predicted Class") | |
], | |
title="Medical Image Classification", | |
description="Upload a medical image to classify it into one of the following categories: COVID, Lung Opacity, No Tumor, Normal, Tumor, or Viral Pneumonia." | |
) | |
# Launch the interface | |
#iface.launch(share=True) | |
#iface.launch() | |
if __name__ == "__main__": | |
print("Launching Gradio Demo...") | |
# iface.queue() | |
iface.launch() |