Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,12 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
from torchvision import transforms
|
5 |
|
|
|
|
|
|
|
6 |
# Load the model
|
7 |
-
model = torch.load("transfer_balanced_learning_model.pth")
|
|
|
8 |
model.eval()
|
9 |
|
10 |
# Define the transforms for input images
|
@@ -17,14 +21,13 @@ transform = transforms.Compose([
|
|
17 |
def predict(image):
|
18 |
# Preprocess the image
|
19 |
image = transform(image)
|
20 |
-
image = image.unsqueeze(0)
|
21 |
with torch.no_grad():
|
22 |
output = model(image)
|
23 |
_, predicted = torch.max(output, 1)
|
24 |
class_names = ["COVID", "Lung_Opacity", "No_Tumor", "Normal", "Tumor", "Viral_Pneumonia"]
|
25 |
return class_names[predicted.item()]
|
26 |
|
27 |
-
|
28 |
demo = gr.Interface(
|
29 |
fn=predict,
|
30 |
inputs="image",
|
@@ -34,4 +37,4 @@ demo = gr.Interface(
|
|
34 |
)
|
35 |
|
36 |
# Launch the Gradio app
|
37 |
-
demo.launch()
|
|
|
3 |
from PIL import Image
|
4 |
from torchvision import transforms
|
5 |
|
6 |
+
# Set the device
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
# Load the model
|
10 |
+
model = torch.load("transfer_balanced_learning_model.pth", map_location=torch.device('cpu'))
|
11 |
+
model = model.to(device)
|
12 |
model.eval()
|
13 |
|
14 |
# Define the transforms for input images
|
|
|
21 |
def predict(image):
|
22 |
# Preprocess the image
|
23 |
image = transform(image)
|
24 |
+
image = image.unsqueeze(0).to(device)
|
25 |
with torch.no_grad():
|
26 |
output = model(image)
|
27 |
_, predicted = torch.max(output, 1)
|
28 |
class_names = ["COVID", "Lung_Opacity", "No_Tumor", "Normal", "Tumor", "Viral_Pneumonia"]
|
29 |
return class_names[predicted.item()]
|
30 |
|
|
|
31 |
demo = gr.Interface(
|
32 |
fn=predict,
|
33 |
inputs="image",
|
|
|
37 |
)
|
38 |
|
39 |
# Launch the Gradio app
|
40 |
+
demo.launch()
|