File size: 62,225 Bytes
ea174b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
import torch
import torch.distributed
import numpy as np
import logging
import math
import copy
import numpy as np
import scipy
import torch
import librosa

from typing import Optional, Tuple
from torch import nn, view_as_real, view_as_complex
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import weight_norm, remove_weight_norm
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
from transformers.activations import ACT2FN
from dataclasses import dataclass
from transformers.modeling_outputs import ModelOutput
from transformers import WhisperModel


# Define function to generate positional embeddings using sine and cosine functions to represent sequence position information
def sinusoids(length, channels, max_timescale=10000):
    """Returns sinusoidal waves for positional embedding"""
    assert channels % 2 == 0
    log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
    inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
    scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
    return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)

# Generate sequence mask to distinguish valid sequence and padding parts
def get_sequence_mask(inputs, inputs_length):
    if inputs.dim() == 3:
        bsz, tgt_len, _ = inputs.size()
    else:
        bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length)
    sequence_mask = torch.arange(0, tgt_len).to(inputs.device)
    sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view(bsz, tgt_len, 1)
    return sequence_mask

# Define RMSNorm layer for normalizing hidden states and stabilizing training process
class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.to(self.weight.dtype)
        return self.weight * hidden_states

# Modified variable-length attention mechanism, supporting FP32 with unified interface
class VarLenAttention(nn.Module):
    def __init__(self, embed_dim, num_heads, causal=False, dropout=0.0):
        """
        Initialize variable-length attention module.

        Parameters:
            embed_dim (int): Embedding dimension (model's hidden dimension)
            num_heads (int): Number of attention heads
            causal (bool): Whether to enable causal attention (only attend to current and previous positions)
            dropout (float): Attention dropout probability
        """
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
        self.causal = causal
        self.dropout = nn.Dropout(dropout)
        self.scaling = self.head_dim ** -0.5  # Scaling factor

        # Linear projection layers for Q, K, V and output
        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)

    def _create_attention_mask(self, seq_len, max_len, device, dtype):
        """
        Create attention mask supporting variable-length sequences and causality.

        Parameters:
            seq_len (torch.Tensor): Sequence length for each sample, shape [bsz]
            max_len (int): Maximum sequence length in the batch
            device: Device for tensor creation
            dtype: Data type for mask values

        Returns:
            mask (torch.Tensor): Attention mask, shape [bsz, 1, max_len, max_len], invalid positions set to minimum value
        """
        bsz = seq_len.size(0)
        # Initialize mask as 1 (valid positions)
        mask = torch.ones(bsz, 1, max_len, max_len, device=device, dtype=dtype)

        # Generate sequence indices
        seq_indices = torch.arange(max_len, device=device).unsqueeze(0)  # [1, max_len]
        seq_len_expanded = seq_len.unsqueeze(1)  # [bsz, 1]

        # Mark valid positions (less than seq_len)
        valid_mask = seq_indices < seq_len_expanded.unsqueeze(-1)  # [bsz, 1, max_len]
        mask = mask * (valid_mask.unsqueeze(2) & valid_mask.unsqueeze(3)).to(dtype)  # [bsz, 1, max_len, max_len]

        # If causal attention, add upper triangular mask
        if self.causal:
            causal_mask = torch.triu(torch.ones(max_len, max_len, device=device, dtype=torch.bool), diagonal=1)
            mask = mask * (~causal_mask.unsqueeze(0).unsqueeze(1)).to(dtype)  # Keep only lower triangular part

        # Set invalid positions (0) to dtype's minimum value
        mask = mask + (1.0 - mask) * torch.finfo(dtype).min  # Valid positions unchanged, invalid positions to minimum value
        return mask

    def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
        """
        Forward propagation, input and output are [bsz, max_len, embed_dim].

        Parameters:
            hidden_states (torch.Tensor): Input hidden states, shape [bsz, max_len, embed_dim]
            seq_len (torch.Tensor): Sequence length for each sample, shape [bsz]

        Returns:
            attn_output (torch.Tensor): Attention output, shape [bsz, max_len, embed_dim]
        """
        bsz, max_len, _ = hidden_states.size()

        # Project to Q, K, V
        query = self.q_proj(hidden_states) * self.scaling  # [bsz, max_len, embed_dim]
        key = self.k_proj(hidden_states)                  # [bsz, max_len, embed_dim]
        value = self.v_proj(hidden_states)                # [bsz, max_len, embed_dim]

        # Reshape to multi-head form
        query = query.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)  # [bsz, num_heads, max_len, head_dim]
        key = key.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)      # [bsz, num_heads, max_len, head_dim]
        value = value.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)  # [bsz, num_heads, max_len, head_dim]

        # Calculate attention scores
        attn_scores = torch.matmul(query, key.transpose(-1, -2))  # [bsz, num_heads, max_len, max_len]

        # Generate attention mask
        attn_mask = self._create_attention_mask(seq_len, max_len, hidden_states.device, attn_scores.dtype)  # [bsz, 1, max_len, max_len]
        # Apply mask (additive form, consistent with HubertEncoder)
        attn_scores = attn_scores + attn_mask  # Invalid positions set to very small value

        # Softmax calculate attention weights
        attn_weights = F.softmax(attn_scores, dim=-1)  # [bsz, num_heads, max_len, max_len]
        attn_weights = self.dropout(attn_weights)

        # Calculate attention output
        attn_output = torch.matmul(attn_weights, value)  # [bsz, num_heads, max_len, head_dim]
        attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, max_len, self.embed_dim)  # [bsz, max_len, embed_dim]

        # Output projection
        attn_output = self.out_proj(attn_output)  # [bsz, max_len, embed_dim]

        return attn_output

# Define Transformer layer containing attention mechanism and feedforward network for feature extraction and transformation
class OmniWhisperTransformerLayer(nn.Module):
    def __init__(self, activation_function="gelu", d_model=1280, attention_heads=20, ffn_dim=5120, causal=False, ln_type="LayerNorm", attn_type="varlen"):
        super().__init__()
        self.embed_dim = d_model
        # Only keep varlen attention mechanism
        if attn_type != "varlen":
            raise ValueError(f"Unknown attn_type: {attn_type}. Only 'varlen' is supported.")
        self.self_attn = VarLenAttention(self.embed_dim, attention_heads, causal)
        if ln_type == "LayerNorm":
            self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        elif ln_type == "RMSNorm":
            self.self_attn_layer_norm = RMSNorm(self.embed_dim)
        else:
            raise ValueError(f"Unknown ln_type: {ln_type}")
        self.activation_fn = ACT2FN[activation_function]
        self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
        self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
        if ln_type == "LayerNorm":
            self.final_layer_norm = nn.LayerNorm(self.embed_dim)
        elif ln_type == "RMSNorm":
            self.final_layer_norm = RMSNorm(self.embed_dim)
        else:
            raise ValueError(f"Unknown ln_type: {ln_type}")

    def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
        residual = hidden_states  # [bsz, max_len, embed_dim]
        hidden_states = self.self_attn_layer_norm(hidden_states)
        # from torch.cuda.amp import autocast
        # print(f"{residual.dtype = }")
        # print(f"Autocast enabled: {torch.is_autocast_enabled():}")
        # print(f"after layernorm {hidden_states.dtype = }")
        hidden_states = self.self_attn(hidden_states, seq_len)  # [bsz, max_len, embed_dim]
        hidden_states = residual + hidden_states
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = self.fc2(hidden_states)
        hidden_states = residual + hidden_states
        if (hidden_states.dtype == torch.float16 or hidden_states.dtype == torch.bfloat16) and \
           (torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
        return hidden_states

# Define audio encoder to convert input audio features to hidden state representation
class OmniAudioEncoder(nn.Module):
    def __init__(
            self, 
            num_mel_bins=128,  # Input feature Mel band number, usually the dimension of Mel spectrogram
            sampling_rate=16000,  # Audio sampling rate, unit Hz
            hop_length=160,  # Frame shift length (sample number) when calculating Mel spectrogram
            stride_size=2,  # Convolution layer step, used for downsampling
            kernel_size=3,  # Convolution kernel size, controlling receptive field
            d_model=1280,  # Model's hidden state dimension (embedding dimension)
            scale_embedding=True,  # Whether to scale embedding (usually used for stabilizing training)
            max_audio_seconds=30,  # Maximum audio duration supported (seconds)
            encoder_layers=32,  # Transformer encoder layer number
            encoder_attention_heads=20,  # Attention head number for each Transformer layer
            encoder_ffn_dim=5120,  # Intermediate dimension for feedforward network
            activation_function="gelu",  # Activation function type, default GELU
            attn_type="varlen"  # New parameter, select attention mechanism type
        ):
        super().__init__()
        # Calculate maximum sequence length: Convert sampling rate to frame number after considering downsampling step
        self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
        # Embedding scaling factor, if enabled sqrt(d_model), otherwise 1.0
        self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
        self.num_mel_bins = num_mel_bins  # Save Mel band number
        self.d_model = d_model  # Save hidden state dimension
        self.stride_size = stride_size
        
        # First convolution layer: Convert Mel spectrogram features (num_mel_bins) to hidden dimension (d_model)
        self.conv1 = nn.Conv1d(num_mel_bins, d_model, kernel_size=kernel_size, padding=1)
        # Second convolution layer: Apply downsampling with stride_size
        self.conv2 = nn.Conv1d(d_model, d_model, kernel_size=kernel_size, stride=stride_size, padding=1)
        
        # Register positional embedding buffer, using sine function to generate, shape (max_source_positions, d_model)
        self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
        
        # Create Transformer encoder layer list, each layer contains attention mechanism and feedforward network
        self.layers = nn.ModuleList([
            OmniWhisperTransformerLayer(
                activation_function=activation_function, 
                d_model=d_model, 
                attention_heads=encoder_attention_heads, 
                ffn_dim=encoder_ffn_dim, 
                causal=False,  # Encoder does not need causal attention
                attn_type=attn_type  # Pass attention type
            ) for _ in range(encoder_layers)
        ])
        
        # Last layer normalization for stable output
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, input_features, input_length, output_hidden_states=False):
        """
        Forward propagation function to convert input audio features to hidden state representation
        
        Parameters:
            input_features (torch.Tensor): Input Mel spectrogram features, shape [bsz, num_mel_bins, seq_len]
            input_length (torch.Tensor): Input sequence length for each sample, shape [bsz]
            output_hidden_states (bool, optional): Whether to return hidden states for each layer, default False
        
        Returns:
            if output_hidden_states is False:
                hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, d_model, tgt_len]
                output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
            else:
                hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, d_model, tgt_len]
                output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
                hidden_states_all_layers (tuple): Tuple containing hidden states for each layer, including initial input
        """
        # Ensure input feature data type consistent with convolution layer weights
        input_features = input_features.to(self.conv1.weight.dtype)  # (B, D, T)
        
        # First layer convolution + GELU activation, Convert Mel spectrogram to hidden states
        inputs_embeds = nn.functional.gelu(self.conv1(input_features))  # (B, D, T)
        
        # Second layer convolution + GELU activation, Apply downsampling with stride_size
        inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))  # (B, D, T)
        
        # Calculate output length: Result after downsampling with stride_size
        output_length = (input_length // self.stride_size).long()  # (B,)
        
        # Adjust dimension order to [bsz, seq_len, d_model] for Transformer input
        hidden_states = inputs_embeds.permute(0, 2, 1)  # (B, T, D)
        
        # Get batch size and target sequence length
        bsz, tgt_len, _ = hidden_states.size()
        
        # According to current sequence length, take or use complete positional embedding
        if tgt_len < self.positional_embedding.shape[0]:
            current_positional_embedding = self.positional_embedding[:tgt_len]
        else:
            current_positional_embedding = self.positional_embedding
        
        # Add input embedding to positional embedding, convert to float to avoid precision issues
        hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype)
        
        # Generate sequence mask for processing variable-length sequence
        attention_mask = get_sequence_mask(hidden_states, output_length)  # [bsz, tgt_len, 1]
        
        # Initialize hidden states list for storing output for each layer (if needed)
        hidden_states_all_layers = () if output_hidden_states else None
        
        # Process hidden states through Transformer encoder layer by layer
        for encoder_layer in self.layers:
            if output_hidden_states:
                hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
            hidden_states = encoder_layer(hidden_states, output_length)  # [bsz, tgt_len, d_model]
        
        # Normalize hidden states
        hidden_states = self.layer_norm(hidden_states)  # [bsz, tgt_len, d_model]
        if output_hidden_states:
            hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
        
        # Use mask to zero out padding parts and ensure output only retains valid data
        hidden_states = torch.where(attention_mask, hidden_states, 0)  # [bsz, tgt_len, d_model]
        hidden_states = hidden_states.transpose(1, 2)  # [bsz, d_model, tgt_len]
        
        if not output_hidden_states:
            return hidden_states, output_length  
        else:
            return hidden_states, output_length, hidden_states_all_layers
    
# Define audio decoder to convert hidden states to Mel spectrogram
class OmniAudioDecoder(nn.Module):
    def __init__(
            self, 
            num_mel_bins=128, 
            sampling_rate=16000, 
            hop_length=160, 
            stride_size=2, 
            kernel_size=3, 
            d_model=1280, 
            scale_embedding=True, 
            max_audio_seconds=30, 
            decoder_layers=32, 
            decoder_attention_heads=20, 
            decoder_ffn_dim=5120, 
            activation_function="gelu",
            attn_type="varlen"  # New parameter, select attention mechanism type
        ):
        super().__init__()
        self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
        self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
        self.num_mel_bins = num_mel_bins
        self.d_model = d_model
        self.stride_size = stride_size
        
        # Correct transpose convolution layer to ensure output length close to stride_size times
        self.deconv1 = nn.ConvTranspose1d(
            d_model, 
            d_model, 
            kernel_size=kernel_size, 
            stride=stride_size, 
            padding=0,  # Do not fill input side
            output_padding=0  # Can be adjusted to precisely control length
        )
        self.deconv2 = nn.ConvTranspose1d(
            d_model, 
            num_mel_bins, 
            kernel_size=kernel_size, 
            stride=1,  # Only convert channels, do not change length
            padding=0
        )
        
        # Positional embedding remains consistent
        self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model)) # (T, D)
        
        # Transformer decoder layer
        self.layers = nn.ModuleList([
            OmniWhisperTransformerLayer(
                activation_function=activation_function, 
                d_model=d_model, 
                attention_heads=decoder_attention_heads, 
                ffn_dim=decoder_ffn_dim, 
                causal=False,  # Decoder uses causal attention
                attn_type=attn_type  # Pass attention type
            ) for _ in range(decoder_layers)
        ])
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, hidden_states, input_length): # (B, D, T)
        # Input is hidden state output from encoder
        hidden_states = hidden_states.transpose(1, 2) # (B, T, D)
        bsz, tgt_len, _ = hidden_states.size()
        
        # Add positional embedding
        if tgt_len < self.positional_embedding.shape[0]:
            current_positional_embedding = self.positional_embedding[:tgt_len] # (T, D)
        else:
            current_positional_embedding = self.positional_embedding
        hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype) # (B, T, D)
        
        # Generate sequence mask
        attention_mask = get_sequence_mask(hidden_states, input_length)  # [bsz, tgt_len, 1]
        
        # Process through decoder layer
        for decoder_layer in self.layers:
            hidden_states = decoder_layer(hidden_states, input_length)  # [bsz, tgt_len, d_model]
        
        # Final layer normalization
        hidden_states = self.layer_norm(hidden_states)  # [bsz, tgt_len, d_model]
        
        # Use mask to zero out padding parts
        hidden_states = torch.where(attention_mask, hidden_states, 0)  # [bsz, tgt_len, d_model]
        
        # Process through transpose convolution layer to reconstruct audio features
        hidden_states = hidden_states.permute(0, 2, 1)  # (B, D, T)
        output_features = nn.functional.gelu(self.deconv1(hidden_states)) # (B, D, T)
        output_features = nn.functional.gelu(self.deconv2(output_features)) # (B, D, T)
        
        # If strictly stride_size times length is needed, can trim extra parts
        expected_length = tgt_len * self.stride_size
        if output_features.size(2) > expected_length:
            output_features = output_features[:, :, :expected_length]
        
        output_length = input_length * self.stride_size
        # Output shape: [bsz, num_mel_bins, seq_len]
        return output_features, output_length

# The following part remains unchanged
class ResidualDownConv(nn.Module):
    def __init__(self, d_model=1280, avg_pooler=4):
        """
        Downsampling module containing residual connection and convolution operation
        
        Parameters:
            d_model (int): Input and output hidden dimension
            avg_pooler (int): Downsampling factor (convolution step)
        """
        super().__init__()
        self.d_model = d_model
        self.avg_pooler = avg_pooler
        self.intermediate_dim = d_model * avg_pooler
        
        # Convolution layer for downsampling
        self.gate_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
        self.up_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
        
        # Downsampled linear projection
        self.down_proj = nn.Linear(self.intermediate_dim, self.intermediate_dim, bias=False)
        
        # Activation function and layer normalization
        self.act_fn = ACT2FN['silu']
        self.layer_norm = nn.LayerNorm(self.intermediate_dim)

    def forward(self, x, input_length):
        """
        Forward propagation, execute downsampling and residual processing
        
        Parameters:
            x (torch.Tensor): Input tensor, shape [B, D, T]
        
        Returns:
            res (torch.Tensor): Downsampled feature, shape [B, intermediate_dim, seq_len // avg_pooler]
            valid_mask (torch.Tensor): Valid sequence mask
        """
        output_length = input_length // self.avg_pooler
        x = x.transpose(1, 2) # (B, T, D)
        batch_size, seq_len, _ = x.shape # (B, T, D)
        if seq_len % self.avg_pooler != 0:
            pad_size = self.avg_pooler - seq_len % self.avg_pooler
            x = F.pad(x, (0, pad_size), "constant", 0)
        
        xt = x.permute(0, 2, 1) # (B, D, T)
        g = self.gate_proj(xt).permute(0, 2, 1)  # (B, T, D)
        u = self.up_proj(xt).permute(0, 2, 1) # (B, T, D)
        x = x.reshape(batch_size, -1, self.intermediate_dim)  # (B, T, D)

        c = self.down_proj(self.act_fn(g) * u) # (B, T, D)
        res = self.layer_norm(c + x) # (B, T, D)
        res = res.transpose(1, 2) # (B, D, T)
        return res, output_length # (B, D, T)
    
    
class UpConv(nn.Module):
    def __init__(self, d_model=1280, stride=4):
        """
        Simple upsampling module using transpose convolution
        
        Parameters:
            d_model (int): Input and output hidden dimension
            stride (int): Upsampling factor (transpose convolution step)
        """
        super().__init__()
        self.d_model = d_model
        self.stride = stride
        
        # Simple transpose convolution layer to keep channel number consistent
        self.up_conv = nn.ConvTranspose1d(
            self.stride * d_model, 
            d_model, 
            kernel_size=stride, 
            stride=stride, 
            bias=False
        )

    def forward(self, x, input_length):
        """
        Forward propagation, execute upsampling
        
        Parameters:
            x (torch.Tensor): Input tensor, shape [B, D * stride, T]
        
        Returns:
            res (torch.Tensor): Upsampled feature, shape [B, D, T * stride]
        """
        # Directly apply transpose convolution
        res = self.up_conv(x)
        output_length = input_length * self.stride
        return res, output_length
    

# Define Transformer encoder containing multiple Transformer layers for feature extraction and transformation
class Transformer(nn.Module):
    def __init__(
            self, 
            input_dim=1280,  # Input feature dimension
            d_model=1280,  # Model's hidden state dimension (embedding dimension)
            output_dim=1280,  # Output feature dimension
            max_source_positions=1500,  # Maximum sequence length for positional embedding
            encoder_layers=32,  # Transformer encoder layer number
            encoder_attention_heads=20,  # Attention head number for each Transformer layer
            encoder_ffn_dim=5120,  # Intermediate dimension for feedforward network
            activation_function="gelu",  # Activation function type, default GELU
            attn_type="varlen"  # Attention mechanism type
    ):
        super().__init__()
        self.input_dim = input_dim  # Save input dimension
        self.d_model = d_model  # Save hidden state dimension
        self.output_dim = output_dim  # Save output dimension
        self.max_source_positions = max_source_positions  # Save maximum sequence length

        # If input dimension and model dimension are not consistent, add input projection layer
        if input_dim != d_model:
            self.proj = nn.Linear(input_dim, d_model, bias=True)
        else:
            self.proj = None  # No need for input projection layer

        # Register positional embedding buffer, using sine function to generate, shape (max_source_positions, d_model)
        self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
        
        # Create Transformer encoder layer list, each layer contains attention mechanism and feedforward network
        self.layers = nn.ModuleList([
            OmniWhisperTransformerLayer(
                activation_function=activation_function, 
                d_model=d_model, 
                attention_heads=encoder_attention_heads, 
                ffn_dim=encoder_ffn_dim, 
                causal=False,  # Encoder does not need causal attention
                attn_type=attn_type  # Pass attention type
            ) for _ in range(encoder_layers)
        ])
        
        # Last layer normalization for stable output
        self.layer_norm = nn.LayerNorm(d_model)

        # If output dimension and model dimension are not consistent, add output projection layer
        if output_dim != d_model:
            self.out_proj = nn.Linear(d_model, output_dim, bias=True)
        else:
            self.out_proj = None  # No need for output projection layer

    def forward(self, input_features: torch.Tensor, input_length: torch.Tensor, output_hidden_states: bool = False):
        """
        Forward propagation function to convert input features through Transformer layer to hidden state representation
        
        Parameters:
            input_features (torch.Tensor): Input features, shape [bsz, input_dim, seq_len] (B, input_dim, T)
            input_length (torch.Tensor): Input sequence length for each sample, shape [bsz]
            output_hidden_states (bool, optional): Whether to return hidden states for each layer, default False
        
        Returns:
            if output_hidden_states is False:
                hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, output_dim, seq_len] (B, output_dim, T)
                output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
            else:
                hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, output_dim, seq_len] (B, output_dim, T)
                output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
                hidden_states_all_layers (tuple): Tuple containing hidden states for each layer, each shape [bsz, seq_len, d_model]
        """
        # Output length is the same as input length, Transformer does not change sequence length
        output_length = input_length.long()  # [bsz]

        # If there is input projection layer, map input features from input_dim to d_model
        if self.proj is not None:
            hidden_states = self.proj(input_features.permute(0, 2, 1)).permute(0, 2, 1)  # [bsz, d_model, seq_len] (B, D, T)
        else:
            hidden_states = input_features  # [bsz, d_model, seq_len] (B, D, T)

        # Adjust input dimension order to [bsz, seq_len, d_model] for Transformer input
        hidden_states = hidden_states.permute(0, 2, 1)  # [bsz, seq_len, d_model] (B, T, D)
        
        # Get batch size and target sequence length
        bsz, tgt_len, _ = hidden_states.size()
        
        # According to current sequence length, take or use complete positional embedding
        if tgt_len < self.positional_embedding.shape[0]:
            current_positional_embedding = self.positional_embedding[:tgt_len]  # [tgt_len, d_model]
        else:
            current_positional_embedding = self.positional_embedding  # [max_source_positions, d_model]
        
        # Add input features to positional embedding, convert to float to avoid precision issues
        hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype)  # [bsz, seq_len, d_model]
        
        # Generate sequence mask for processing variable-length sequence
        attention_mask = get_sequence_mask(hidden_states, output_length)  # [bsz, tgt_len, 1]
        
        # Initialize hidden states list for storing output for each layer (if needed)
        hidden_states_all_layers = () if output_hidden_states else None
        
        # Process hidden states through Transformer encoder layer by layer
        for encoder_layer in self.layers:
            if output_hidden_states:
                hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
            hidden_states = encoder_layer(hidden_states, output_length)  # [bsz, seq_len, d_model]
        
        # Normalize hidden states
        hidden_states = self.layer_norm(hidden_states)  # [bsz, seq_len, d_model]
        if output_hidden_states:
            hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
        
        # Use mask to zero out padding parts and ensure output only retains valid data
        hidden_states = torch.where(attention_mask, hidden_states, 0)  # [bsz, seq_len, d_model]
        
        # Adjust dimension order to [bsz, d_model, seq_len]
        hidden_states = hidden_states.transpose(1, 2)  # [bsz, d_model, seq_len] (B, D, T)

        # If there is output projection layer, map hidden states from d_model to output_dim
        if self.out_proj is not None:
            hidden_states = self.out_proj(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)  # [bsz, output_dim, seq_len] (B, output_dim, T)

        if not output_hidden_states:
            return hidden_states, output_length
        else:
            return hidden_states, output_length, hidden_states_all_layers
        

def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
    """
    Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.

    Args:
        x (Tensor): Input tensor.
        clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.

    Returns:
        Tensor: Element-wise logarithm of the input tensor with clipping applied.
    """
    return torch.log(torch.clip(x, min=clip_val))


def symlog(x: torch.Tensor) -> torch.Tensor:
    return torch.sign(x) * torch.log1p(x.abs())


def symexp(x: torch.Tensor) -> torch.Tensor:
    return torch.sign(x) * (torch.exp(x.abs()) - 1)


class STFT(nn.Module):
    def __init__(
        self,
        n_fft: int,
        hop_length: int,
        win_length: int,
        center=True,
    ):
        super().__init__()
        self.center = center
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        window = torch.hann_window(win_length)
        self.register_buffer("window", window)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (B, T * hop_length)

        if not self.center:
            pad = self.win_length - self.hop_length
            x = torch.nn.functional.pad(x, (pad // 2, pad // 2), mode="reflect")

        stft_spec = torch.stft(
            x,
            self.n_fft,
            hop_length=self.hop_length,
            win_length=self.win_length,
            window=self.window,
            center=self.center,
            return_complex=False,
        )  # (B, n_fft // 2 + 1, T, 2)

        rea = stft_spec[:, :, :, 0]  # (B, n_fft // 2 + 1, T, 2)
        imag = stft_spec[:, :, :, 1]  # (B, n_fft // 2 + 1, T, 2)

        log_mag = torch.log(
            torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5
        )  # (B, n_fft // 2 + 1, T)
        phase = torch.atan2(imag, rea)  # (B, n_fft // 2 + 1, T)

        return log_mag, phase


class ISTFT(nn.Module):
    """
    Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with
    windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges.
    See issue: https://github.com/pytorch/pytorch/issues/62323
    Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs.
    The NOLA constraint is met as we trim padded samples anyway.

    Args:
        n_fft (int): Size of Fourier transform.
        hop_length (int): The distance between neighboring sliding window frames.
        win_length (int): The size of window frame and STFT filter.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
    """

    def __init__(
        self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"
    ):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        window = torch.hann_window(win_length)
        self.register_buffer("window", window)

    def forward(self, spec: torch.Tensor) -> torch.Tensor:
        """
        Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram.

        Args:
            spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size,
                            N is the number of frequency bins, and T is the number of time frames.

        Returns:
            Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal.
        """
        if self.padding == "center":
            # Fallback to pytorch native implementation
            return torch.istft(
                spec,
                self.n_fft,
                self.hop_length,
                self.win_length,
                self.window,
                center=True,
            )
        elif self.padding == "same":
            pad = (self.win_length - self.hop_length) // 2
        else:
            raise ValueError("Padding must be 'center' or 'same'.")

        assert spec.dim() == 3, "Expected a 3D tensor as input"
        B, N, T = spec.shape

        # Inverse FFT
        ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward")
        ifft = ifft * self.window[None, :, None]

        # Overlap and Add
        output_size = (T - 1) * self.hop_length + self.win_length
        y = torch.nn.functional.fold(
            ifft,
            output_size=(1, output_size),
            kernel_size=(1, self.win_length),
            stride=(1, self.hop_length),
        )[:, 0, 0, pad:-pad]

        # Window envelope
        window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
        window_envelope = torch.nn.functional.fold(
            window_sq,
            output_size=(1, output_size),
            kernel_size=(1, self.win_length),
            stride=(1, self.hop_length),
        ).squeeze()[pad:-pad]

        # Normalize
        assert (window_envelope > 1e-11).all()
        y = y / window_envelope

        return y


class MDCT(nn.Module):
    """
    Modified Discrete Cosine Transform (MDCT) module.

    Args:
        frame_len (int): Length of the MDCT frame.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
    """

    def __init__(self, frame_len: int, padding: str = "same"):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.frame_len = frame_len
        N = frame_len // 2
        n0 = (N + 1) / 2
        window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
        self.register_buffer("window", window)

        pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len)
        post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N)
        # view_as_real: NCCL Backend does not support ComplexFloat data type
        # https://github.com/pytorch/pytorch/issues/71613
        self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
        self.register_buffer("post_twiddle", view_as_real(post_twiddle))

    def forward(self, audio: torch.Tensor) -> torch.Tensor:
        """
        Apply the Modified Discrete Cosine Transform (MDCT) to the input audio.

        Args:
            audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size
                and T is the length of the audio.

        Returns:
            Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames
                and N is the number of frequency bins.
        """
        if self.padding == "center":
            audio = torch.nn.functional.pad(
                audio, (self.frame_len // 2, self.frame_len // 2)
            )
        elif self.padding == "same":
            # hop_length is 1/2 frame_len
            audio = torch.nn.functional.pad(
                audio, (self.frame_len // 4, self.frame_len // 4)
            )
        else:
            raise ValueError("Padding must be 'center' or 'same'.")

        x = audio.unfold(-1, self.frame_len, self.frame_len // 2)
        N = self.frame_len // 2
        x = x * self.window.expand(x.shape)
        X = torch.fft.fft(
            x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1
        )[..., :N]
        res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N)
        return torch.real(res) * np.sqrt(2)


class IMDCT(nn.Module):
    """
    Inverse Modified Discrete Cosine Transform (IMDCT) module.

    Args:
        frame_len (int): Length of the MDCT frame.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
    """

    def __init__(self, frame_len: int, padding: str = "same"):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.frame_len = frame_len
        N = frame_len // 2
        n0 = (N + 1) / 2
        window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
        self.register_buffer("window", window)

        pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
        post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
        self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
        self.register_buffer("post_twiddle", view_as_real(post_twiddle))

    def forward(self, X: torch.Tensor) -> torch.Tensor:
        """
        Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.

        Args:
            X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size,
                L is the number of frames, and N is the number of frequency bins.

        Returns:
            Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
        """
        B, L, N = X.shape
        Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
        Y[..., :N] = X
        Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
        y = torch.fft.ifft(
            Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1
        )
        y = (
            torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape))
            * np.sqrt(N)
            * np.sqrt(2)
        )
        result = y * self.window.expand(y.shape)
        output_size = (1, (L + 1) * N)
        audio = torch.nn.functional.fold(
            result.transpose(1, 2),
            output_size=output_size,
            kernel_size=(1, self.frame_len),
            stride=(1, self.frame_len // 2),
        )[:, 0, 0, :]

        if self.padding == "center":
            pad = self.frame_len // 2
        elif self.padding == "same":
            pad = self.frame_len // 4
        else:
            raise ValueError("Padding must be 'center' or 'same'.")

        audio = audio[:, pad:-pad]
        return audio


class FourierHead(nn.Module):
    """Base class for inverse fourier modules."""

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Args:
            x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
                        L is the sequence length, and H denotes the model dimension.

        Returns:
            Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
        """
        raise NotImplementedError("Subclasses must implement the forward method.")


class ISTFTHead(FourierHead):
    """
    ISTFT Head module for predicting STFT complex coefficients.

    Args:
        dim (int): Hidden dimension of the model.
        n_fft (int): Size of Fourier transform.
        hop_length (int): The distance between neighboring sliding window frames, which should align with
                          the resolution of the input features.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
    """

    def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
        super().__init__()
        out_dim = n_fft + 2
        self.out = torch.nn.Linear(dim, out_dim)
        self.istft = ISTFT(
            n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the ISTFTHead module.

        Args:
            x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
                        L is the sequence length, and H denotes the model dimension.

        Returns:
            Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
        """
        x = self.out(x).transpose(1, 2)
        mag, p = x.chunk(2, dim=1)
        mag = torch.exp(mag)
        mag = torch.clip(
            mag, max=1e2
        )  # safeguard to prevent excessively large magnitudes
        # wrapping happens here. These two lines produce real and imaginary value
        x = torch.cos(p)
        y = torch.sin(p)
        # recalculating phase here does not produce anything new
        # only costs time
        # phase = torch.atan2(y, x)
        # S = mag * torch.exp(phase * 1j)
        # better directly produce the complex value
        original_dtype = x.dtype
        S = mag.float() * (x.float() + 1j * y.float())
        audio = self.istft(S)
        audio = audio.to(original_dtype)
        return audio


class IMDCTSymExpHead(FourierHead):
    """
    IMDCT Head module for predicting MDCT coefficients with symmetric exponential function

    Args:
        dim (int): Hidden dimension of the model.
        mdct_frame_len (int): Length of the MDCT frame.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
        sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
                                     based on perceptual scaling. Defaults to None.
        clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
    """

    def __init__(
        self,
        dim: int,
        mdct_frame_len: int,
        padding: str = "same",
        sample_rate: Optional[int] = None,
        clip_audio: bool = False,
    ):
        super().__init__()
        out_dim = mdct_frame_len // 2
        self.out = nn.Linear(dim, out_dim)
        self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
        self.clip_audio = clip_audio

        if sample_rate is not None:
            # optionally init the last layer following mel-scale
            m_max = _hz_to_mel(sample_rate // 2)
            m_pts = torch.linspace(0, m_max, out_dim)
            f_pts = _mel_to_hz(m_pts)
            scale = 1 - (f_pts / f_pts.max())

            with torch.no_grad():
                self.out.weight.mul_(scale.view(-1, 1))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the IMDCTSymExpHead module.

        Args:
            x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
                        L is the sequence length, and H denotes the model dimension.

        Returns:
            Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
        """
        x = self.out(x)
        x = symexp(x)
        x = torch.clip(
            x, min=-1e2, max=1e2
        )  # safeguard to prevent excessively large magnitudes
        audio = self.imdct(x)
        if self.clip_audio:
            audio = torch.clip(x, min=-1.0, max=1.0)

        return audio


class IMDCTCosHead(FourierHead):
    """
    IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p)

    Args:
        dim (int): Hidden dimension of the model.
        mdct_frame_len (int): Length of the MDCT frame.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
        clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
    """

    def __init__(
        self,
        dim: int,
        mdct_frame_len: int,
        padding: str = "same",
        clip_audio: bool = False,
    ):
        super().__init__()
        self.clip_audio = clip_audio
        self.out = nn.Linear(dim, mdct_frame_len)
        self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the IMDCTCosHead module.

        Args:
            x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
                        L is the sequence length, and H denotes the model dimension.

        Returns:
            Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
        """
        x = self.out(x)
        m, p = x.chunk(2, dim=2)
        m = torch.exp(m).clip(
            max=1e2
        )  # safeguard to prevent excessively large magnitudes
        audio = self.imdct(m * torch.cos(p))
        if self.clip_audio:
            audio = torch.clip(x, min=-1.0, max=1.0)
        return audio


class ConvNeXtBlock(nn.Module):
    """ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.

    Args:
        dim (int): Number of input channels.
        intermediate_dim (int): Dimensionality of the intermediate layer.
        layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
            Defaults to None.
        adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
            None means non-conditional LayerNorm. Defaults to None.
    """

    def __init__(
        self,
        dim: int,
        intermediate_dim: int,
        layer_scale_init_value: float,
        adanorm_num_embeddings: Optional[int] = None,
    ):
        super().__init__()
        self.dwconv = nn.Conv1d(
            dim, dim, kernel_size=7, padding=3, groups=dim
        )  # depthwise conv
        self.adanorm = adanorm_num_embeddings is not None
        if adanorm_num_embeddings:
            self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
        else:
            self.norm = nn.LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, intermediate_dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(intermediate_dim, dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )

    def forward(
        self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        residual = x
        x = self.dwconv(x)
        x = x.transpose(1, 2)  # (B, C, T) -> (B, T, C)
        if self.adanorm:
            assert cond_embedding_id is not None
            x = self.norm(x, cond_embedding_id)
        else:
            x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.transpose(1, 2)  # (B, T, C) -> (B, C, T)

        x = residual + x
        return x


class AdaLayerNorm(nn.Module):
    """
    Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes

    Args:
        num_embeddings (int): Number of embeddings.
        embedding_dim (int): Dimension of the embeddings.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.dim = embedding_dim
        self.scale = nn.Embedding(
            num_embeddings=num_embeddings, embedding_dim=embedding_dim
        )
        self.shift = nn.Embedding(
            num_embeddings=num_embeddings, embedding_dim=embedding_dim
        )
        torch.nn.init.ones_(self.scale.weight)
        torch.nn.init.zeros_(self.shift.weight)

    def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
        scale = self.scale(cond_embedding_id)
        shift = self.shift(cond_embedding_id)
        x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
        x = x * scale + shift
        return x


class ResBlock1(nn.Module):
    """
    ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
    but without upsampling layers.

    Args:
        dim (int): Number of input channels.
        kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
        dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
            Defaults to (1, 3, 5).
        lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
            Defaults to 0.1.
        layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
            Defaults to None.
    """

    def __init__(
        self,
        dim: int,
        kernel_size: int = 3,
        dilation: Tuple[int, int, int] = (1, 3, 5),
        lrelu_slope: float = 0.1,
        layer_scale_init_value: Optional[float] = None,
    ):
        super().__init__()
        self.lrelu_slope = lrelu_slope
        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=self.get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=self.get_padding(kernel_size, dilation[1]),
                    )
                ),
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=dilation[2],
                        padding=self.get_padding(kernel_size, dilation[2]),
                    )
                ),
            ]
        )

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=self.get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=self.get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=self.get_padding(kernel_size, 1),
                    )
                ),
            ]
        )

        self.gamma = nn.ParameterList(
            [
                (
                    nn.Parameter(
                        layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
                    )
                    if layer_scale_init_value is not None
                    else None
                ),
                (
                    nn.Parameter(
                        layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
                    )
                    if layer_scale_init_value is not None
                    else None
                ),
                (
                    nn.Parameter(
                        layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
                    )
                    if layer_scale_init_value is not None
                    else None
                ),
            ]
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
            xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
            xt = c1(xt)
            xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
            xt = c2(xt)
            if gamma is not None:
                xt = gamma * xt
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)

    @staticmethod
    def get_padding(kernel_size: int, dilation: int = 1) -> int:
        return int((kernel_size * dilation - dilation) / 2)


class Backbone(nn.Module):
    """Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        """
        Args:
            x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
                        C denotes output features, and L is the sequence length.

        Returns:
            Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
                    and H denotes the model dimension.
        """
        raise NotImplementedError("Subclasses must implement the forward method.")


class VocosBackbone(Backbone):
    """
    Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization

    Args:
        input_channels (int): Number of input features channels.
        dim (int): Hidden dimension of the model.
        intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
        num_layers (int): Number of ConvNeXtBlock layers.
        layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
        adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
                                                None means non-conditional model. Defaults to None.
    """

    def __init__(
        self,
        input_channels: int,
        dim: int,
        intermediate_dim: int,
        num_layers: int,
        layer_scale_init_value: Optional[float] = None,
        adanorm_num_embeddings: Optional[int] = None,
    ):
        super().__init__()
        self.input_channels = input_channels
        self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
        self.adanorm = adanorm_num_embeddings is not None
        if adanorm_num_embeddings:
            self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
        else:
            self.norm = nn.LayerNorm(dim, eps=1e-6)
        layer_scale_init_value = layer_scale_init_value or 1 / num_layers
        self.convnext = nn.ModuleList(
            [
                ConvNeXtBlock(
                    dim=dim,
                    intermediate_dim=intermediate_dim,
                    layer_scale_init_value=layer_scale_init_value,
                    adanorm_num_embeddings=adanorm_num_embeddings,
                )
                for _ in range(num_layers)
            ]
        )
        self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv1d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        bandwidth_id = kwargs.get("bandwidth_id", None)
        x = self.embed(x)
        if self.adanorm:
            assert bandwidth_id is not None
            x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
        else:
            x = self.norm(x.transpose(1, 2))
        x = x.transpose(1, 2)
        for conv_block in self.convnext:
            x = conv_block(x, cond_embedding_id=bandwidth_id)
        x = self.final_layer_norm(x.transpose(1, 2))
        return x


class VocosResNetBackbone(Backbone):
    """
    Vocos backbone module built with ResBlocks.

    Args:
        input_channels (int): Number of input features channels.
        dim (int): Hidden dimension of the model.
        num_blocks (int): Number of ResBlock1 blocks.
        layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
    """

    def __init__(
        self,
        input_channels,
        dim,
        num_blocks,
        layer_scale_init_value=None,
    ):
        super().__init__()
        self.input_channels = input_channels
        self.embed = weight_norm(
            nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
        )
        layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
        self.resnet = nn.Sequential(
            *[
                ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
                for _ in range(num_blocks)
            ]
        )

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        x = self.embed(x)
        x = self.resnet(x)
        x = x.transpose(1, 2)
        return x


class Vocos(nn.Module):
    def __init__(
        self,
        input_channels: int = 128,
        dim: int = 512,
        intermediate_dim: int = 4096,
        num_layers: int = 30,
        n_fft: int = 640,
        hop_size: int = 160,
        padding: str = "same",
        adanorm_num_embeddings=None,
    ):
        super().__init__()

        self.backbone = VocosBackbone(
            input_channels=input_channels,
            dim=dim,
            intermediate_dim=intermediate_dim,
            num_layers=num_layers,
            adanorm_num_embeddings=adanorm_num_embeddings,
        )
        self.head = ISTFTHead(dim, n_fft, hop_size, padding)
        self.hop_size = hop_size

    def forward(self, x, input_length):
        x = self.backbone(x)
        x = self.head(x)
        output_length = input_length * self.hop_size
        return x[:, None, :], output_length