File size: 62,225 Bytes
ea174b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 |
import torch
import torch.distributed
import numpy as np
import logging
import math
import copy
import numpy as np
import scipy
import torch
import librosa
from typing import Optional, Tuple
from torch import nn, view_as_real, view_as_complex
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import weight_norm, remove_weight_norm
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
from transformers.activations import ACT2FN
from dataclasses import dataclass
from transformers.modeling_outputs import ModelOutput
from transformers import WhisperModel
# Define function to generate positional embeddings using sine and cosine functions to represent sequence position information
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoidal waves for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
# Generate sequence mask to distinguish valid sequence and padding parts
def get_sequence_mask(inputs, inputs_length):
if inputs.dim() == 3:
bsz, tgt_len, _ = inputs.size()
else:
bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length)
sequence_mask = torch.arange(0, tgt_len).to(inputs.device)
sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view(bsz, tgt_len, 1)
return sequence_mask
# Define RMSNorm layer for normalizing hidden states and stabilizing training process
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
# Modified variable-length attention mechanism, supporting FP32 with unified interface
class VarLenAttention(nn.Module):
def __init__(self, embed_dim, num_heads, causal=False, dropout=0.0):
"""
Initialize variable-length attention module.
Parameters:
embed_dim (int): Embedding dimension (model's hidden dimension)
num_heads (int): Number of attention heads
causal (bool): Whether to enable causal attention (only attend to current and previous positions)
dropout (float): Attention dropout probability
"""
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
self.causal = causal
self.dropout = nn.Dropout(dropout)
self.scaling = self.head_dim ** -0.5 # Scaling factor
# Linear projection layers for Q, K, V and output
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
def _create_attention_mask(self, seq_len, max_len, device, dtype):
"""
Create attention mask supporting variable-length sequences and causality.
Parameters:
seq_len (torch.Tensor): Sequence length for each sample, shape [bsz]
max_len (int): Maximum sequence length in the batch
device: Device for tensor creation
dtype: Data type for mask values
Returns:
mask (torch.Tensor): Attention mask, shape [bsz, 1, max_len, max_len], invalid positions set to minimum value
"""
bsz = seq_len.size(0)
# Initialize mask as 1 (valid positions)
mask = torch.ones(bsz, 1, max_len, max_len, device=device, dtype=dtype)
# Generate sequence indices
seq_indices = torch.arange(max_len, device=device).unsqueeze(0) # [1, max_len]
seq_len_expanded = seq_len.unsqueeze(1) # [bsz, 1]
# Mark valid positions (less than seq_len)
valid_mask = seq_indices < seq_len_expanded.unsqueeze(-1) # [bsz, 1, max_len]
mask = mask * (valid_mask.unsqueeze(2) & valid_mask.unsqueeze(3)).to(dtype) # [bsz, 1, max_len, max_len]
# If causal attention, add upper triangular mask
if self.causal:
causal_mask = torch.triu(torch.ones(max_len, max_len, device=device, dtype=torch.bool), diagonal=1)
mask = mask * (~causal_mask.unsqueeze(0).unsqueeze(1)).to(dtype) # Keep only lower triangular part
# Set invalid positions (0) to dtype's minimum value
mask = mask + (1.0 - mask) * torch.finfo(dtype).min # Valid positions unchanged, invalid positions to minimum value
return mask
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
"""
Forward propagation, input and output are [bsz, max_len, embed_dim].
Parameters:
hidden_states (torch.Tensor): Input hidden states, shape [bsz, max_len, embed_dim]
seq_len (torch.Tensor): Sequence length for each sample, shape [bsz]
Returns:
attn_output (torch.Tensor): Attention output, shape [bsz, max_len, embed_dim]
"""
bsz, max_len, _ = hidden_states.size()
# Project to Q, K, V
query = self.q_proj(hidden_states) * self.scaling # [bsz, max_len, embed_dim]
key = self.k_proj(hidden_states) # [bsz, max_len, embed_dim]
value = self.v_proj(hidden_states) # [bsz, max_len, embed_dim]
# Reshape to multi-head form
query = query.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2) # [bsz, num_heads, max_len, head_dim]
key = key.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2) # [bsz, num_heads, max_len, head_dim]
value = value.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2) # [bsz, num_heads, max_len, head_dim]
# Calculate attention scores
attn_scores = torch.matmul(query, key.transpose(-1, -2)) # [bsz, num_heads, max_len, max_len]
# Generate attention mask
attn_mask = self._create_attention_mask(seq_len, max_len, hidden_states.device, attn_scores.dtype) # [bsz, 1, max_len, max_len]
# Apply mask (additive form, consistent with HubertEncoder)
attn_scores = attn_scores + attn_mask # Invalid positions set to very small value
# Softmax calculate attention weights
attn_weights = F.softmax(attn_scores, dim=-1) # [bsz, num_heads, max_len, max_len]
attn_weights = self.dropout(attn_weights)
# Calculate attention output
attn_output = torch.matmul(attn_weights, value) # [bsz, num_heads, max_len, head_dim]
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, max_len, self.embed_dim) # [bsz, max_len, embed_dim]
# Output projection
attn_output = self.out_proj(attn_output) # [bsz, max_len, embed_dim]
return attn_output
# Define Transformer layer containing attention mechanism and feedforward network for feature extraction and transformation
class OmniWhisperTransformerLayer(nn.Module):
def __init__(self, activation_function="gelu", d_model=1280, attention_heads=20, ffn_dim=5120, causal=False, ln_type="LayerNorm", attn_type="varlen"):
super().__init__()
self.embed_dim = d_model
# Only keep varlen attention mechanism
if attn_type != "varlen":
raise ValueError(f"Unknown attn_type: {attn_type}. Only 'varlen' is supported.")
self.self_attn = VarLenAttention(self.embed_dim, attention_heads, causal)
if ln_type == "LayerNorm":
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
elif ln_type == "RMSNorm":
self.self_attn_layer_norm = RMSNorm(self.embed_dim)
else:
raise ValueError(f"Unknown ln_type: {ln_type}")
self.activation_fn = ACT2FN[activation_function]
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
if ln_type == "LayerNorm":
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
elif ln_type == "RMSNorm":
self.final_layer_norm = RMSNorm(self.embed_dim)
else:
raise ValueError(f"Unknown ln_type: {ln_type}")
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
residual = hidden_states # [bsz, max_len, embed_dim]
hidden_states = self.self_attn_layer_norm(hidden_states)
# from torch.cuda.amp import autocast
# print(f"{residual.dtype = }")
# print(f"Autocast enabled: {torch.is_autocast_enabled():}")
# print(f"after layernorm {hidden_states.dtype = }")
hidden_states = self.self_attn(hidden_states, seq_len) # [bsz, max_len, embed_dim]
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.fc2(hidden_states)
hidden_states = residual + hidden_states
if (hidden_states.dtype == torch.float16 or hidden_states.dtype == torch.bfloat16) and \
(torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
return hidden_states
# Define audio encoder to convert input audio features to hidden state representation
class OmniAudioEncoder(nn.Module):
def __init__(
self,
num_mel_bins=128, # Input feature Mel band number, usually the dimension of Mel spectrogram
sampling_rate=16000, # Audio sampling rate, unit Hz
hop_length=160, # Frame shift length (sample number) when calculating Mel spectrogram
stride_size=2, # Convolution layer step, used for downsampling
kernel_size=3, # Convolution kernel size, controlling receptive field
d_model=1280, # Model's hidden state dimension (embedding dimension)
scale_embedding=True, # Whether to scale embedding (usually used for stabilizing training)
max_audio_seconds=30, # Maximum audio duration supported (seconds)
encoder_layers=32, # Transformer encoder layer number
encoder_attention_heads=20, # Attention head number for each Transformer layer
encoder_ffn_dim=5120, # Intermediate dimension for feedforward network
activation_function="gelu", # Activation function type, default GELU
attn_type="varlen" # New parameter, select attention mechanism type
):
super().__init__()
# Calculate maximum sequence length: Convert sampling rate to frame number after considering downsampling step
self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
# Embedding scaling factor, if enabled sqrt(d_model), otherwise 1.0
self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
self.num_mel_bins = num_mel_bins # Save Mel band number
self.d_model = d_model # Save hidden state dimension
self.stride_size = stride_size
# First convolution layer: Convert Mel spectrogram features (num_mel_bins) to hidden dimension (d_model)
self.conv1 = nn.Conv1d(num_mel_bins, d_model, kernel_size=kernel_size, padding=1)
# Second convolution layer: Apply downsampling with stride_size
self.conv2 = nn.Conv1d(d_model, d_model, kernel_size=kernel_size, stride=stride_size, padding=1)
# Register positional embedding buffer, using sine function to generate, shape (max_source_positions, d_model)
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
# Create Transformer encoder layer list, each layer contains attention mechanism and feedforward network
self.layers = nn.ModuleList([
OmniWhisperTransformerLayer(
activation_function=activation_function,
d_model=d_model,
attention_heads=encoder_attention_heads,
ffn_dim=encoder_ffn_dim,
causal=False, # Encoder does not need causal attention
attn_type=attn_type # Pass attention type
) for _ in range(encoder_layers)
])
# Last layer normalization for stable output
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, input_features, input_length, output_hidden_states=False):
"""
Forward propagation function to convert input audio features to hidden state representation
Parameters:
input_features (torch.Tensor): Input Mel spectrogram features, shape [bsz, num_mel_bins, seq_len]
input_length (torch.Tensor): Input sequence length for each sample, shape [bsz]
output_hidden_states (bool, optional): Whether to return hidden states for each layer, default False
Returns:
if output_hidden_states is False:
hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, d_model, tgt_len]
output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
else:
hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, d_model, tgt_len]
output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
hidden_states_all_layers (tuple): Tuple containing hidden states for each layer, including initial input
"""
# Ensure input feature data type consistent with convolution layer weights
input_features = input_features.to(self.conv1.weight.dtype) # (B, D, T)
# First layer convolution + GELU activation, Convert Mel spectrogram to hidden states
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) # (B, D, T)
# Second layer convolution + GELU activation, Apply downsampling with stride_size
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) # (B, D, T)
# Calculate output length: Result after downsampling with stride_size
output_length = (input_length // self.stride_size).long() # (B,)
# Adjust dimension order to [bsz, seq_len, d_model] for Transformer input
hidden_states = inputs_embeds.permute(0, 2, 1) # (B, T, D)
# Get batch size and target sequence length
bsz, tgt_len, _ = hidden_states.size()
# According to current sequence length, take or use complete positional embedding
if tgt_len < self.positional_embedding.shape[0]:
current_positional_embedding = self.positional_embedding[:tgt_len]
else:
current_positional_embedding = self.positional_embedding
# Add input embedding to positional embedding, convert to float to avoid precision issues
hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype)
# Generate sequence mask for processing variable-length sequence
attention_mask = get_sequence_mask(hidden_states, output_length) # [bsz, tgt_len, 1]
# Initialize hidden states list for storing output for each layer (if needed)
hidden_states_all_layers = () if output_hidden_states else None
# Process hidden states through Transformer encoder layer by layer
for encoder_layer in self.layers:
if output_hidden_states:
hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
hidden_states = encoder_layer(hidden_states, output_length) # [bsz, tgt_len, d_model]
# Normalize hidden states
hidden_states = self.layer_norm(hidden_states) # [bsz, tgt_len, d_model]
if output_hidden_states:
hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
# Use mask to zero out padding parts and ensure output only retains valid data
hidden_states = torch.where(attention_mask, hidden_states, 0) # [bsz, tgt_len, d_model]
hidden_states = hidden_states.transpose(1, 2) # [bsz, d_model, tgt_len]
if not output_hidden_states:
return hidden_states, output_length
else:
return hidden_states, output_length, hidden_states_all_layers
# Define audio decoder to convert hidden states to Mel spectrogram
class OmniAudioDecoder(nn.Module):
def __init__(
self,
num_mel_bins=128,
sampling_rate=16000,
hop_length=160,
stride_size=2,
kernel_size=3,
d_model=1280,
scale_embedding=True,
max_audio_seconds=30,
decoder_layers=32,
decoder_attention_heads=20,
decoder_ffn_dim=5120,
activation_function="gelu",
attn_type="varlen" # New parameter, select attention mechanism type
):
super().__init__()
self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
self.num_mel_bins = num_mel_bins
self.d_model = d_model
self.stride_size = stride_size
# Correct transpose convolution layer to ensure output length close to stride_size times
self.deconv1 = nn.ConvTranspose1d(
d_model,
d_model,
kernel_size=kernel_size,
stride=stride_size,
padding=0, # Do not fill input side
output_padding=0 # Can be adjusted to precisely control length
)
self.deconv2 = nn.ConvTranspose1d(
d_model,
num_mel_bins,
kernel_size=kernel_size,
stride=1, # Only convert channels, do not change length
padding=0
)
# Positional embedding remains consistent
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model)) # (T, D)
# Transformer decoder layer
self.layers = nn.ModuleList([
OmniWhisperTransformerLayer(
activation_function=activation_function,
d_model=d_model,
attention_heads=decoder_attention_heads,
ffn_dim=decoder_ffn_dim,
causal=False, # Decoder uses causal attention
attn_type=attn_type # Pass attention type
) for _ in range(decoder_layers)
])
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, hidden_states, input_length): # (B, D, T)
# Input is hidden state output from encoder
hidden_states = hidden_states.transpose(1, 2) # (B, T, D)
bsz, tgt_len, _ = hidden_states.size()
# Add positional embedding
if tgt_len < self.positional_embedding.shape[0]:
current_positional_embedding = self.positional_embedding[:tgt_len] # (T, D)
else:
current_positional_embedding = self.positional_embedding
hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype) # (B, T, D)
# Generate sequence mask
attention_mask = get_sequence_mask(hidden_states, input_length) # [bsz, tgt_len, 1]
# Process through decoder layer
for decoder_layer in self.layers:
hidden_states = decoder_layer(hidden_states, input_length) # [bsz, tgt_len, d_model]
# Final layer normalization
hidden_states = self.layer_norm(hidden_states) # [bsz, tgt_len, d_model]
# Use mask to zero out padding parts
hidden_states = torch.where(attention_mask, hidden_states, 0) # [bsz, tgt_len, d_model]
# Process through transpose convolution layer to reconstruct audio features
hidden_states = hidden_states.permute(0, 2, 1) # (B, D, T)
output_features = nn.functional.gelu(self.deconv1(hidden_states)) # (B, D, T)
output_features = nn.functional.gelu(self.deconv2(output_features)) # (B, D, T)
# If strictly stride_size times length is needed, can trim extra parts
expected_length = tgt_len * self.stride_size
if output_features.size(2) > expected_length:
output_features = output_features[:, :, :expected_length]
output_length = input_length * self.stride_size
# Output shape: [bsz, num_mel_bins, seq_len]
return output_features, output_length
# The following part remains unchanged
class ResidualDownConv(nn.Module):
def __init__(self, d_model=1280, avg_pooler=4):
"""
Downsampling module containing residual connection and convolution operation
Parameters:
d_model (int): Input and output hidden dimension
avg_pooler (int): Downsampling factor (convolution step)
"""
super().__init__()
self.d_model = d_model
self.avg_pooler = avg_pooler
self.intermediate_dim = d_model * avg_pooler
# Convolution layer for downsampling
self.gate_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
self.up_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
# Downsampled linear projection
self.down_proj = nn.Linear(self.intermediate_dim, self.intermediate_dim, bias=False)
# Activation function and layer normalization
self.act_fn = ACT2FN['silu']
self.layer_norm = nn.LayerNorm(self.intermediate_dim)
def forward(self, x, input_length):
"""
Forward propagation, execute downsampling and residual processing
Parameters:
x (torch.Tensor): Input tensor, shape [B, D, T]
Returns:
res (torch.Tensor): Downsampled feature, shape [B, intermediate_dim, seq_len // avg_pooler]
valid_mask (torch.Tensor): Valid sequence mask
"""
output_length = input_length // self.avg_pooler
x = x.transpose(1, 2) # (B, T, D)
batch_size, seq_len, _ = x.shape # (B, T, D)
if seq_len % self.avg_pooler != 0:
pad_size = self.avg_pooler - seq_len % self.avg_pooler
x = F.pad(x, (0, pad_size), "constant", 0)
xt = x.permute(0, 2, 1) # (B, D, T)
g = self.gate_proj(xt).permute(0, 2, 1) # (B, T, D)
u = self.up_proj(xt).permute(0, 2, 1) # (B, T, D)
x = x.reshape(batch_size, -1, self.intermediate_dim) # (B, T, D)
c = self.down_proj(self.act_fn(g) * u) # (B, T, D)
res = self.layer_norm(c + x) # (B, T, D)
res = res.transpose(1, 2) # (B, D, T)
return res, output_length # (B, D, T)
class UpConv(nn.Module):
def __init__(self, d_model=1280, stride=4):
"""
Simple upsampling module using transpose convolution
Parameters:
d_model (int): Input and output hidden dimension
stride (int): Upsampling factor (transpose convolution step)
"""
super().__init__()
self.d_model = d_model
self.stride = stride
# Simple transpose convolution layer to keep channel number consistent
self.up_conv = nn.ConvTranspose1d(
self.stride * d_model,
d_model,
kernel_size=stride,
stride=stride,
bias=False
)
def forward(self, x, input_length):
"""
Forward propagation, execute upsampling
Parameters:
x (torch.Tensor): Input tensor, shape [B, D * stride, T]
Returns:
res (torch.Tensor): Upsampled feature, shape [B, D, T * stride]
"""
# Directly apply transpose convolution
res = self.up_conv(x)
output_length = input_length * self.stride
return res, output_length
# Define Transformer encoder containing multiple Transformer layers for feature extraction and transformation
class Transformer(nn.Module):
def __init__(
self,
input_dim=1280, # Input feature dimension
d_model=1280, # Model's hidden state dimension (embedding dimension)
output_dim=1280, # Output feature dimension
max_source_positions=1500, # Maximum sequence length for positional embedding
encoder_layers=32, # Transformer encoder layer number
encoder_attention_heads=20, # Attention head number for each Transformer layer
encoder_ffn_dim=5120, # Intermediate dimension for feedforward network
activation_function="gelu", # Activation function type, default GELU
attn_type="varlen" # Attention mechanism type
):
super().__init__()
self.input_dim = input_dim # Save input dimension
self.d_model = d_model # Save hidden state dimension
self.output_dim = output_dim # Save output dimension
self.max_source_positions = max_source_positions # Save maximum sequence length
# If input dimension and model dimension are not consistent, add input projection layer
if input_dim != d_model:
self.proj = nn.Linear(input_dim, d_model, bias=True)
else:
self.proj = None # No need for input projection layer
# Register positional embedding buffer, using sine function to generate, shape (max_source_positions, d_model)
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
# Create Transformer encoder layer list, each layer contains attention mechanism and feedforward network
self.layers = nn.ModuleList([
OmniWhisperTransformerLayer(
activation_function=activation_function,
d_model=d_model,
attention_heads=encoder_attention_heads,
ffn_dim=encoder_ffn_dim,
causal=False, # Encoder does not need causal attention
attn_type=attn_type # Pass attention type
) for _ in range(encoder_layers)
])
# Last layer normalization for stable output
self.layer_norm = nn.LayerNorm(d_model)
# If output dimension and model dimension are not consistent, add output projection layer
if output_dim != d_model:
self.out_proj = nn.Linear(d_model, output_dim, bias=True)
else:
self.out_proj = None # No need for output projection layer
def forward(self, input_features: torch.Tensor, input_length: torch.Tensor, output_hidden_states: bool = False):
"""
Forward propagation function to convert input features through Transformer layer to hidden state representation
Parameters:
input_features (torch.Tensor): Input features, shape [bsz, input_dim, seq_len] (B, input_dim, T)
input_length (torch.Tensor): Input sequence length for each sample, shape [bsz]
output_hidden_states (bool, optional): Whether to return hidden states for each layer, default False
Returns:
if output_hidden_states is False:
hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, output_dim, seq_len] (B, output_dim, T)
output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
else:
hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, output_dim, seq_len] (B, output_dim, T)
output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
hidden_states_all_layers (tuple): Tuple containing hidden states for each layer, each shape [bsz, seq_len, d_model]
"""
# Output length is the same as input length, Transformer does not change sequence length
output_length = input_length.long() # [bsz]
# If there is input projection layer, map input features from input_dim to d_model
if self.proj is not None:
hidden_states = self.proj(input_features.permute(0, 2, 1)).permute(0, 2, 1) # [bsz, d_model, seq_len] (B, D, T)
else:
hidden_states = input_features # [bsz, d_model, seq_len] (B, D, T)
# Adjust input dimension order to [bsz, seq_len, d_model] for Transformer input
hidden_states = hidden_states.permute(0, 2, 1) # [bsz, seq_len, d_model] (B, T, D)
# Get batch size and target sequence length
bsz, tgt_len, _ = hidden_states.size()
# According to current sequence length, take or use complete positional embedding
if tgt_len < self.positional_embedding.shape[0]:
current_positional_embedding = self.positional_embedding[:tgt_len] # [tgt_len, d_model]
else:
current_positional_embedding = self.positional_embedding # [max_source_positions, d_model]
# Add input features to positional embedding, convert to float to avoid precision issues
hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype) # [bsz, seq_len, d_model]
# Generate sequence mask for processing variable-length sequence
attention_mask = get_sequence_mask(hidden_states, output_length) # [bsz, tgt_len, 1]
# Initialize hidden states list for storing output for each layer (if needed)
hidden_states_all_layers = () if output_hidden_states else None
# Process hidden states through Transformer encoder layer by layer
for encoder_layer in self.layers:
if output_hidden_states:
hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
hidden_states = encoder_layer(hidden_states, output_length) # [bsz, seq_len, d_model]
# Normalize hidden states
hidden_states = self.layer_norm(hidden_states) # [bsz, seq_len, d_model]
if output_hidden_states:
hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
# Use mask to zero out padding parts and ensure output only retains valid data
hidden_states = torch.where(attention_mask, hidden_states, 0) # [bsz, seq_len, d_model]
# Adjust dimension order to [bsz, d_model, seq_len]
hidden_states = hidden_states.transpose(1, 2) # [bsz, d_model, seq_len] (B, D, T)
# If there is output projection layer, map hidden states from d_model to output_dim
if self.out_proj is not None:
hidden_states = self.out_proj(hidden_states.permute(0, 2, 1)).permute(0, 2, 1) # [bsz, output_dim, seq_len] (B, output_dim, T)
if not output_hidden_states:
return hidden_states, output_length
else:
return hidden_states, output_length, hidden_states_all_layers
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
"""
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.
Args:
x (Tensor): Input tensor.
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.
Returns:
Tensor: Element-wise logarithm of the input tensor with clipping applied.
"""
return torch.log(torch.clip(x, min=clip_val))
def symlog(x: torch.Tensor) -> torch.Tensor:
return torch.sign(x) * torch.log1p(x.abs())
def symexp(x: torch.Tensor) -> torch.Tensor:
return torch.sign(x) * (torch.exp(x.abs()) - 1)
class STFT(nn.Module):
def __init__(
self,
n_fft: int,
hop_length: int,
win_length: int,
center=True,
):
super().__init__()
self.center = center
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
window = torch.hann_window(win_length)
self.register_buffer("window", window)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: (B, T * hop_length)
if not self.center:
pad = self.win_length - self.hop_length
x = torch.nn.functional.pad(x, (pad // 2, pad // 2), mode="reflect")
stft_spec = torch.stft(
x,
self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.window,
center=self.center,
return_complex=False,
) # (B, n_fft // 2 + 1, T, 2)
rea = stft_spec[:, :, :, 0] # (B, n_fft // 2 + 1, T, 2)
imag = stft_spec[:, :, :, 1] # (B, n_fft // 2 + 1, T, 2)
log_mag = torch.log(
torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5
) # (B, n_fft // 2 + 1, T)
phase = torch.atan2(imag, rea) # (B, n_fft // 2 + 1, T)
return log_mag, phase
class ISTFT(nn.Module):
"""
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges.
See issue: https://github.com/pytorch/pytorch/issues/62323
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs.
The NOLA constraint is met as we trim padded samples anyway.
Args:
n_fft (int): Size of Fourier transform.
hop_length (int): The distance between neighboring sliding window frames.
win_length (int): The size of window frame and STFT filter.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
"""
def __init__(
self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"
):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding = padding
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
window = torch.hann_window(win_length)
self.register_buffer("window", window)
def forward(self, spec: torch.Tensor) -> torch.Tensor:
"""
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram.
Args:
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size,
N is the number of frequency bins, and T is the number of time frames.
Returns:
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal.
"""
if self.padding == "center":
# Fallback to pytorch native implementation
return torch.istft(
spec,
self.n_fft,
self.hop_length,
self.win_length,
self.window,
center=True,
)
elif self.padding == "same":
pad = (self.win_length - self.hop_length) // 2
else:
raise ValueError("Padding must be 'center' or 'same'.")
assert spec.dim() == 3, "Expected a 3D tensor as input"
B, N, T = spec.shape
# Inverse FFT
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward")
ifft = ifft * self.window[None, :, None]
# Overlap and Add
output_size = (T - 1) * self.hop_length + self.win_length
y = torch.nn.functional.fold(
ifft,
output_size=(1, output_size),
kernel_size=(1, self.win_length),
stride=(1, self.hop_length),
)[:, 0, 0, pad:-pad]
# Window envelope
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
window_envelope = torch.nn.functional.fold(
window_sq,
output_size=(1, output_size),
kernel_size=(1, self.win_length),
stride=(1, self.hop_length),
).squeeze()[pad:-pad]
# Normalize
assert (window_envelope > 1e-11).all()
y = y / window_envelope
return y
class MDCT(nn.Module):
"""
Modified Discrete Cosine Transform (MDCT) module.
Args:
frame_len (int): Length of the MDCT frame.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
"""
def __init__(self, frame_len: int, padding: str = "same"):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding = padding
self.frame_len = frame_len
N = frame_len // 2
n0 = (N + 1) / 2
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
self.register_buffer("window", window)
pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len)
post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N)
# view_as_real: NCCL Backend does not support ComplexFloat data type
# https://github.com/pytorch/pytorch/issues/71613
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
self.register_buffer("post_twiddle", view_as_real(post_twiddle))
def forward(self, audio: torch.Tensor) -> torch.Tensor:
"""
Apply the Modified Discrete Cosine Transform (MDCT) to the input audio.
Args:
audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size
and T is the length of the audio.
Returns:
Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames
and N is the number of frequency bins.
"""
if self.padding == "center":
audio = torch.nn.functional.pad(
audio, (self.frame_len // 2, self.frame_len // 2)
)
elif self.padding == "same":
# hop_length is 1/2 frame_len
audio = torch.nn.functional.pad(
audio, (self.frame_len // 4, self.frame_len // 4)
)
else:
raise ValueError("Padding must be 'center' or 'same'.")
x = audio.unfold(-1, self.frame_len, self.frame_len // 2)
N = self.frame_len // 2
x = x * self.window.expand(x.shape)
X = torch.fft.fft(
x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1
)[..., :N]
res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N)
return torch.real(res) * np.sqrt(2)
class IMDCT(nn.Module):
"""
Inverse Modified Discrete Cosine Transform (IMDCT) module.
Args:
frame_len (int): Length of the MDCT frame.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
"""
def __init__(self, frame_len: int, padding: str = "same"):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding = padding
self.frame_len = frame_len
N = frame_len // 2
n0 = (N + 1) / 2
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
self.register_buffer("window", window)
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
self.register_buffer("post_twiddle", view_as_real(post_twiddle))
def forward(self, X: torch.Tensor) -> torch.Tensor:
"""
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.
Args:
X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size,
L is the number of frames, and N is the number of frequency bins.
Returns:
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
"""
B, L, N = X.shape
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
Y[..., :N] = X
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
y = torch.fft.ifft(
Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1
)
y = (
torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape))
* np.sqrt(N)
* np.sqrt(2)
)
result = y * self.window.expand(y.shape)
output_size = (1, (L + 1) * N)
audio = torch.nn.functional.fold(
result.transpose(1, 2),
output_size=output_size,
kernel_size=(1, self.frame_len),
stride=(1, self.frame_len // 2),
)[:, 0, 0, :]
if self.padding == "center":
pad = self.frame_len // 2
elif self.padding == "same":
pad = self.frame_len // 4
else:
raise ValueError("Padding must be 'center' or 'same'.")
audio = audio[:, pad:-pad]
return audio
class FourierHead(nn.Module):
"""Base class for inverse fourier modules."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
L is the sequence length, and H denotes the model dimension.
Returns:
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
"""
raise NotImplementedError("Subclasses must implement the forward method.")
class ISTFTHead(FourierHead):
"""
ISTFT Head module for predicting STFT complex coefficients.
Args:
dim (int): Hidden dimension of the model.
n_fft (int): Size of Fourier transform.
hop_length (int): The distance between neighboring sliding window frames, which should align with
the resolution of the input features.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
"""
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
super().__init__()
out_dim = n_fft + 2
self.out = torch.nn.Linear(dim, out_dim)
self.istft = ISTFT(
n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the ISTFTHead module.
Args:
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
L is the sequence length, and H denotes the model dimension.
Returns:
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
"""
x = self.out(x).transpose(1, 2)
mag, p = x.chunk(2, dim=1)
mag = torch.exp(mag)
mag = torch.clip(
mag, max=1e2
) # safeguard to prevent excessively large magnitudes
# wrapping happens here. These two lines produce real and imaginary value
x = torch.cos(p)
y = torch.sin(p)
# recalculating phase here does not produce anything new
# only costs time
# phase = torch.atan2(y, x)
# S = mag * torch.exp(phase * 1j)
# better directly produce the complex value
original_dtype = x.dtype
S = mag.float() * (x.float() + 1j * y.float())
audio = self.istft(S)
audio = audio.to(original_dtype)
return audio
class IMDCTSymExpHead(FourierHead):
"""
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function
Args:
dim (int): Hidden dimension of the model.
mdct_frame_len (int): Length of the MDCT frame.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
based on perceptual scaling. Defaults to None.
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
"""
def __init__(
self,
dim: int,
mdct_frame_len: int,
padding: str = "same",
sample_rate: Optional[int] = None,
clip_audio: bool = False,
):
super().__init__()
out_dim = mdct_frame_len // 2
self.out = nn.Linear(dim, out_dim)
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
self.clip_audio = clip_audio
if sample_rate is not None:
# optionally init the last layer following mel-scale
m_max = _hz_to_mel(sample_rate // 2)
m_pts = torch.linspace(0, m_max, out_dim)
f_pts = _mel_to_hz(m_pts)
scale = 1 - (f_pts / f_pts.max())
with torch.no_grad():
self.out.weight.mul_(scale.view(-1, 1))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the IMDCTSymExpHead module.
Args:
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
L is the sequence length, and H denotes the model dimension.
Returns:
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
"""
x = self.out(x)
x = symexp(x)
x = torch.clip(
x, min=-1e2, max=1e2
) # safeguard to prevent excessively large magnitudes
audio = self.imdct(x)
if self.clip_audio:
audio = torch.clip(x, min=-1.0, max=1.0)
return audio
class IMDCTCosHead(FourierHead):
"""
IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p)
Args:
dim (int): Hidden dimension of the model.
mdct_frame_len (int): Length of the MDCT frame.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
"""
def __init__(
self,
dim: int,
mdct_frame_len: int,
padding: str = "same",
clip_audio: bool = False,
):
super().__init__()
self.clip_audio = clip_audio
self.out = nn.Linear(dim, mdct_frame_len)
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the IMDCTCosHead module.
Args:
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
L is the sequence length, and H denotes the model dimension.
Returns:
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
"""
x = self.out(x)
m, p = x.chunk(2, dim=2)
m = torch.exp(m).clip(
max=1e2
) # safeguard to prevent excessively large magnitudes
audio = self.imdct(m * torch.cos(p))
if self.clip_audio:
audio = torch.clip(x, min=-1.0, max=1.0)
return audio
class ConvNeXtBlock(nn.Module):
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
Args:
dim (int): Number of input channels.
intermediate_dim (int): Dimensionality of the intermediate layer.
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
Defaults to None.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional LayerNorm. Defaults to None.
"""
def __init__(
self,
dim: int,
intermediate_dim: int,
layer_scale_init_value: float,
adanorm_num_embeddings: Optional[int] = None,
):
super().__init__()
self.dwconv = nn.Conv1d(
dim, dim, kernel_size=7, padding=3, groups=dim
) # depthwise conv
self.adanorm = adanorm_num_embeddings is not None
if adanorm_num_embeddings:
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
else:
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, intermediate_dim
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(intermediate_dim, dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
if layer_scale_init_value > 0
else None
)
def forward(
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
) -> torch.Tensor:
residual = x
x = self.dwconv(x)
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
if self.adanorm:
assert cond_embedding_id is not None
x = self.norm(x, cond_embedding_id)
else:
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
x = residual + x
return x
class AdaLayerNorm(nn.Module):
"""
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
Args:
num_embeddings (int): Number of embeddings.
embedding_dim (int): Dimension of the embeddings.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.dim = embedding_dim
self.scale = nn.Embedding(
num_embeddings=num_embeddings, embedding_dim=embedding_dim
)
self.shift = nn.Embedding(
num_embeddings=num_embeddings, embedding_dim=embedding_dim
)
torch.nn.init.ones_(self.scale.weight)
torch.nn.init.zeros_(self.shift.weight)
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
scale = self.scale(cond_embedding_id)
shift = self.shift(cond_embedding_id)
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
x = x * scale + shift
return x
class ResBlock1(nn.Module):
"""
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
but without upsampling layers.
Args:
dim (int): Number of input channels.
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
Defaults to (1, 3, 5).
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
Defaults to 0.1.
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
Defaults to None.
"""
def __init__(
self,
dim: int,
kernel_size: int = 3,
dilation: Tuple[int, int, int] = (1, 3, 5),
lrelu_slope: float = 0.1,
layer_scale_init_value: Optional[float] = None,
):
super().__init__()
self.lrelu_slope = lrelu_slope
self.convs1 = nn.ModuleList(
[
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[0],
padding=self.get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[1],
padding=self.get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[2],
padding=self.get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs2 = nn.ModuleList(
[
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
),
]
)
self.gamma = nn.ParameterList(
[
(
nn.Parameter(
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
)
if layer_scale_init_value is not None
else None
),
(
nn.Parameter(
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
)
if layer_scale_init_value is not None
else None
),
(
nn.Parameter(
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
)
if layer_scale_init_value is not None
else None
),
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
xt = c1(xt)
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
xt = c2(xt)
if gamma is not None:
xt = gamma * xt
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
@staticmethod
def get_padding(kernel_size: int, dilation: int = 1) -> int:
return int((kernel_size * dilation - dilation) / 2)
class Backbone(nn.Module):
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
C denotes output features, and L is the sequence length.
Returns:
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
and H denotes the model dimension.
"""
raise NotImplementedError("Subclasses must implement the forward method.")
class VocosBackbone(Backbone):
"""
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
Args:
input_channels (int): Number of input features channels.
dim (int): Hidden dimension of the model.
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
num_layers (int): Number of ConvNeXtBlock layers.
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional model. Defaults to None.
"""
def __init__(
self,
input_channels: int,
dim: int,
intermediate_dim: int,
num_layers: int,
layer_scale_init_value: Optional[float] = None,
adanorm_num_embeddings: Optional[int] = None,
):
super().__init__()
self.input_channels = input_channels
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
self.adanorm = adanorm_num_embeddings is not None
if adanorm_num_embeddings:
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
else:
self.norm = nn.LayerNorm(dim, eps=1e-6)
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
self.convnext = nn.ModuleList(
[
ConvNeXtBlock(
dim=dim,
intermediate_dim=intermediate_dim,
layer_scale_init_value=layer_scale_init_value,
adanorm_num_embeddings=adanorm_num_embeddings,
)
for _ in range(num_layers)
]
)
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
bandwidth_id = kwargs.get("bandwidth_id", None)
x = self.embed(x)
if self.adanorm:
assert bandwidth_id is not None
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
else:
x = self.norm(x.transpose(1, 2))
x = x.transpose(1, 2)
for conv_block in self.convnext:
x = conv_block(x, cond_embedding_id=bandwidth_id)
x = self.final_layer_norm(x.transpose(1, 2))
return x
class VocosResNetBackbone(Backbone):
"""
Vocos backbone module built with ResBlocks.
Args:
input_channels (int): Number of input features channels.
dim (int): Hidden dimension of the model.
num_blocks (int): Number of ResBlock1 blocks.
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
"""
def __init__(
self,
input_channels,
dim,
num_blocks,
layer_scale_init_value=None,
):
super().__init__()
self.input_channels = input_channels
self.embed = weight_norm(
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
)
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
self.resnet = nn.Sequential(
*[
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
for _ in range(num_blocks)
]
)
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
x = self.embed(x)
x = self.resnet(x)
x = x.transpose(1, 2)
return x
class Vocos(nn.Module):
def __init__(
self,
input_channels: int = 128,
dim: int = 512,
intermediate_dim: int = 4096,
num_layers: int = 30,
n_fft: int = 640,
hop_size: int = 160,
padding: str = "same",
adanorm_num_embeddings=None,
):
super().__init__()
self.backbone = VocosBackbone(
input_channels=input_channels,
dim=dim,
intermediate_dim=intermediate_dim,
num_layers=num_layers,
adanorm_num_embeddings=adanorm_num_embeddings,
)
self.head = ISTFTHead(dim, n_fft, hop_size, padding)
self.hop_size = hop_size
def forward(self, x, input_length):
x = self.backbone(x)
x = self.head(x)
output_length = input_length * self.hop_size
return x[:, None, :], output_length
|