Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from detection import ObjectDetection | |
| examples = [ | |
| ['test-images/plant1.jpeg', 0.31], | |
| ['test-images/plant1.jpeg', 0.51], | |
| ['test-images/plant1.jpeg', 0.39], | |
| ] | |
| def get_predictions(img, threshold, box_color, text_color): | |
| v8_results = yolov8_detector.v8_score_frame(img) | |
| v8_frame = yolov8_detector.plot_bboxes(v8_results, img, float(threshold), box_color, text_color) | |
| return v8_frame | |
| with gr.Blocks(title="Leaf Disease Detection", theme=gr.themes.Monochrome()) as interface: | |
| gr.Markdown("# Leaf Disease Detection") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(shape=(416,416), label="Input Image") | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| box_color = gr.ColorPicker(label="Box Color", value="#0000ff") | |
| with gr.Column(): | |
| text_color = gr.ColorPicker(label="Prediction Color", value="#ff0000") | |
| confidence = gr.Slider(maximum=1, step=0.01, value=0.4, label="Confidence Threshold", interactive=True) | |
| btn = gr.Button("Detect") | |
| with gr.Row(): | |
| with gr.Box(): | |
| v8_prediction = gr.Image(shape=(416,416), label="YOLOv8") | |
| btn.click( | |
| get_predictions, | |
| [image, confidence, box_color, text_color], | |
| [v8_prediction] | |
| ) | |
| with gr.Row(): | |
| gr.Examples(examples=examples, inputs=[image, confidence]) | |
| yolov8_detector = ObjectDetection('yolov8') | |
| interface.launch() | |