Spaces:
Runtime error
Runtime error
Commit
·
9f8fcff
1
Parent(s):
8d642b1
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from detection import ObjectDetection
|
| 3 |
+
|
| 4 |
+
examples = [
|
| 5 |
+
['test-images/plant1.jpeg', 0.31],
|
| 6 |
+
['test-images/plant2.jpeg', 0.51],
|
| 7 |
+
['test-images/plant3.webp', 0.39],
|
| 8 |
+
]
|
| 9 |
+
|
| 10 |
+
def get_predictions(img, threshold, box_color, text_color):
|
| 11 |
+
v8_results = yolov8_detector.v8_score_frame(img)
|
| 12 |
+
v8_frame = yolov8_detector.plot_bboxes(v8_results, img, float(threshold), box_color, text_color)
|
| 13 |
+
return v8_frame
|
| 14 |
+
|
| 15 |
+
with gr.Blocks(title="Leaf Disease Detection", theme=gr.themes.Monochrome()) as interface:
|
| 16 |
+
gr.Markdown("# Leaf Disease Detection")
|
| 17 |
+
with gr.Row():
|
| 18 |
+
with gr.Column():
|
| 19 |
+
image = gr.Image(shape=(416,416), label="Input Image")
|
| 20 |
+
with gr.Column():
|
| 21 |
+
with gr.Row():
|
| 22 |
+
with gr.Column():
|
| 23 |
+
box_color = gr.ColorPicker(label="Box Color", value="#0000ff")
|
| 24 |
+
with gr.Column():
|
| 25 |
+
text_color = gr.ColorPicker(label="Prediction Color", value="#ff0000")
|
| 26 |
+
|
| 27 |
+
confidence = gr.Slider(maximum=1, step=0.01, value=0.4, label="Confidence Threshold", interactive=True)
|
| 28 |
+
btn = gr.Button("Detect")
|
| 29 |
+
|
| 30 |
+
with gr.Row():
|
| 31 |
+
with gr.Box():
|
| 32 |
+
v8_prediction = gr.Image(shape=(416,416), label="YOLOv8")
|
| 33 |
+
|
| 34 |
+
btn.click(
|
| 35 |
+
get_predictions,
|
| 36 |
+
[image, confidence, box_color, text_color],
|
| 37 |
+
[v8_prediction]
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
with gr.Row():
|
| 41 |
+
gr.Examples(examples=examples, inputs=[image, confidence])
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
yolov8_detector = ObjectDetection('yolov8')
|
| 45 |
+
|
| 46 |
+
interface.launch()
|