Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from segment_anything.modeling import TwoWayTransformer, MaskDecoder | |
| from typing import Dict, List, Tuple | |
| class LayerNorm2d(nn.Module): | |
| def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(num_channels)) | |
| self.bias = nn.Parameter(torch.zeros(num_channels)) | |
| self.eps = eps | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
| return x | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, | |
| input_dim: int, | |
| hidden_dim: int, | |
| output_dim: int, | |
| num_layers: int, | |
| sigmoid_output: bool = False, | |
| ) -> None: | |
| super().__init__() | |
| self.num_layers = num_layers | |
| h = [hidden_dim] * (num_layers - 1) | |
| self.layers = nn.ModuleList( | |
| nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) | |
| ) | |
| self.sigmoid_output = sigmoid_output | |
| def forward(self, x): | |
| for i, layer in enumerate(self.layers): | |
| x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
| if self.sigmoid_output: | |
| x = F.sigmoid(x) | |
| return x | |
| class MaskDecoderHQ(MaskDecoder): | |
| def __init__(self, model_type): | |
| super().__init__(transformer_dim=256, | |
| transformer=TwoWayTransformer( | |
| depth=2, | |
| embedding_dim=256, | |
| mlp_dim=2048, | |
| num_heads=8, | |
| ), | |
| num_multimask_outputs=3, | |
| activation=nn.GELU, | |
| iou_head_depth= 3, | |
| iou_head_hidden_dim= 256,) | |
| assert model_type in ["vit_b","vit_l","vit_h"] | |
| checkpoint_dict = {"vit_b":"pretrained_checkpoint/sam_vit_b_maskdecoder.pth", | |
| "vit_l":"pretrained_checkpoint/sam_vit_l_maskdecoder.pth", | |
| 'vit_h':"pretrained_checkpoint/sam_vit_h_maskdecoder.pth"} | |
| checkpoint_path = checkpoint_dict[model_type] | |
| self.load_state_dict(torch.load(checkpoint_path)) | |
| print("HQ Decoder init from SAM MaskDecoder") | |
| for n,p in self.named_parameters(): | |
| p.requires_grad = False | |
| transformer_dim=256 | |
| vit_dim_dict = {"vit_b":768,"vit_l":1024,"vit_h":1280} | |
| vit_dim = vit_dim_dict[model_type] | |
| self.hf_token = nn.Embedding(1, transformer_dim) | |
| self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) | |
| self.num_mask_tokens = self.num_mask_tokens + 1 | |
| self.compress_vit_feat = nn.Sequential( | |
| nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2), | |
| LayerNorm2d(transformer_dim), | |
| nn.GELU(), | |
| nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2)) | |
| self.embedding_encoder = nn.Sequential( | |
| nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), | |
| LayerNorm2d(transformer_dim // 4), | |
| nn.GELU(), | |
| nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), | |
| ) | |
| self.embedding_maskfeature = nn.Sequential( | |
| nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1), | |
| LayerNorm2d(transformer_dim // 4), | |
| nn.GELU(), | |
| nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1)) | |
| def forward( | |
| self, | |
| image_embeddings: torch.Tensor, | |
| image_pe: torch.Tensor, | |
| sparse_prompt_embeddings: torch.Tensor, | |
| dense_prompt_embeddings: torch.Tensor, | |
| multimask_output: bool, | |
| hq_token_only: bool, | |
| interm_embeddings: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Predict masks given image and prompt embeddings. | |
| Arguments: | |
| image_embeddings (torch.Tensor): the embeddings from the ViT image encoder | |
| image_pe (torch.Tensor): positional encoding with the shape of image_embeddings | |
| sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes | |
| dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs | |
| multimask_output (bool): Whether to return multiple masks or a single | |
| mask. | |
| Returns: | |
| torch.Tensor: batched predicted hq masks | |
| """ | |
| vit_features = interm_embeddings[0].permute(0, 3, 1, 2) # early-layer ViT feature, after 1st global attention block in ViT | |
| hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features) | |
| batch_len = len(image_embeddings) | |
| masks = [] | |
| iou_preds = [] | |
| for i_batch in range(batch_len): | |
| mask, iou_pred = self.predict_masks( | |
| image_embeddings=image_embeddings[i_batch].unsqueeze(0), | |
| image_pe=image_pe[i_batch], | |
| sparse_prompt_embeddings=sparse_prompt_embeddings[i_batch], | |
| dense_prompt_embeddings=dense_prompt_embeddings[i_batch], | |
| hq_feature = hq_features[i_batch].unsqueeze(0) | |
| ) | |
| masks.append(mask) | |
| iou_preds.append(iou_pred) | |
| masks = torch.cat(masks,0) | |
| iou_preds = torch.cat(iou_preds,0) | |
| # Select the correct mask or masks for output | |
| if multimask_output: | |
| # mask with highest score | |
| mask_slice = slice(1,self.num_mask_tokens-1) | |
| iou_preds = iou_preds[:, mask_slice] | |
| iou_preds, max_iou_idx = torch.max(iou_preds,dim=1) | |
| iou_preds = iou_preds.unsqueeze(1) | |
| masks_multi = masks[:, mask_slice, :, :] | |
| masks_sam = masks_multi[torch.arange(masks_multi.size(0)),max_iou_idx].unsqueeze(1) | |
| else: | |
| # singale mask output, default | |
| mask_slice = slice(0, 1) | |
| masks_sam = masks[:,mask_slice] | |
| masks_hq = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens), :, :] | |
| if hq_token_only: | |
| return masks_hq | |
| else: | |
| return masks_sam, masks_hq | |
| def predict_masks( | |
| self, | |
| image_embeddings: torch.Tensor, | |
| image_pe: torch.Tensor, | |
| sparse_prompt_embeddings: torch.Tensor, | |
| dense_prompt_embeddings: torch.Tensor, | |
| hq_feature: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Predicts masks. See 'forward' for more details.""" | |
| output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0) | |
| output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) | |
| tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) | |
| # Expand per-image data in batch direction to be per-mask | |
| src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) | |
| src = src + dense_prompt_embeddings | |
| pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) | |
| b, c, h, w = src.shape | |
| # Run the transformer | |
| hs, src = self.transformer(src, pos_src, tokens) | |
| iou_token_out = hs[:, 0, :] | |
| mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] | |
| # Upscale mask embeddings and predict masks using the mask tokens | |
| src = src.transpose(1, 2).view(b, c, h, w) | |
| upscaled_embedding_sam = self.output_upscaling(src) | |
| upscaled_embedding_ours = self.embedding_maskfeature(upscaled_embedding_sam) + hq_feature | |
| hyper_in_list: List[torch.Tensor] = [] | |
| for i in range(self.num_mask_tokens): | |
| if i < 4: | |
| hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) | |
| else: | |
| hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :])) | |
| hyper_in = torch.stack(hyper_in_list, dim=1) | |
| b, c, h, w = upscaled_embedding_sam.shape | |
| masks_sam = (hyper_in[:,:4] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w) | |
| masks_ours = (hyper_in[:,4:] @ upscaled_embedding_ours.view(b, c, h * w)).view(b, -1, h, w) | |
| masks = torch.cat([masks_sam,masks_ours],dim=1) | |
| iou_pred = self.iou_prediction_head(iou_token_out) | |
| return masks, iou_pred |