Update demos/musicgen_app.py
Browse files- demos/musicgen_app.py +208 -1
demos/musicgen_app.py
CHANGED
@@ -154,4 +154,211 @@ class Predictor:
|
|
154 |
result_task_id, result = self.result_queue.get()
|
155 |
if result_task_id == task_id:
|
156 |
if isinstance(result, Exception):
|
157 |
-
raise result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
result_task_id, result = self.result_queue.get()
|
155 |
if result_task_id == task_id:
|
156 |
if isinstance(result, Exception):
|
157 |
+
raise result # Re-raise the exception in the main process
|
158 |
+
return result # (wav, diffusion_wav) or (wav, None)
|
159 |
+
|
160 |
+
def shutdown(self):
|
161 |
+
"""
|
162 |
+
Shuts down the worker process.
|
163 |
+
"""
|
164 |
+
self.task_queue.put(None) # Send sentinel value to stop the worker
|
165 |
+
self.process.join() # Wait for the process to terminate
|
166 |
+
|
167 |
+
|
168 |
+
# Global predictor instance
|
169 |
+
_predictor = None
|
170 |
+
|
171 |
+
def get_predictor(model_name:str = 'facebook/musicgen-melody'):
|
172 |
+
global _predictor
|
173 |
+
if _predictor is None:
|
174 |
+
_predictor = Predictor(model_name)
|
175 |
+
return _predictor
|
176 |
+
|
177 |
+
def predict_full(model, model_path, use_mbd, text, melody, duration, topk, topp, temperature, cfg_coef):
|
178 |
+
|
179 |
+
predictor = get_predictor(model)
|
180 |
+
task_id = predictor.predict(
|
181 |
+
text=text,
|
182 |
+
melody=melody,
|
183 |
+
duration=duration,
|
184 |
+
use_diffusion=use_mbd,
|
185 |
+
top_k=topk,
|
186 |
+
top_p=topp,
|
187 |
+
temperature=temperature,
|
188 |
+
cfg_coef=cfg_coef,
|
189 |
+
)
|
190 |
+
|
191 |
+
wav, diffusion_wav = predictor.get_result(task_id)
|
192 |
+
|
193 |
+
# Save and return audio files
|
194 |
+
wav_paths = []
|
195 |
+
video_paths = []
|
196 |
+
|
197 |
+
# Save standard output
|
198 |
+
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
199 |
+
audio_write(
|
200 |
+
file.name, wav[0], 32000, strategy="loudness", #hardcoded sample rate
|
201 |
+
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False
|
202 |
+
)
|
203 |
+
wav_paths.append(file.name)
|
204 |
+
video_paths.append(make_waveform(file.name)) # Make and clean up video
|
205 |
+
file_cleaner.add(file.name)
|
206 |
+
|
207 |
+
# Save MBD output if used
|
208 |
+
if diffusion_wav is not None:
|
209 |
+
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
210 |
+
audio_write(
|
211 |
+
file.name, diffusion_wav[0], 32000, strategy="loudness", #hardcoded sample rate
|
212 |
+
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False
|
213 |
+
)
|
214 |
+
wav_paths.append(file.name)
|
215 |
+
video_paths.append(make_waveform(file.name)) # Make and clean up video
|
216 |
+
file_cleaner.add(file.name)
|
217 |
+
|
218 |
+
if use_mbd:
|
219 |
+
return video_paths[0], wav_paths[0], video_paths[1], wav_paths[1]
|
220 |
+
return video_paths[0], wav_paths[0], None, None
|
221 |
+
|
222 |
+
|
223 |
+
def toggle_audio_src(choice):
|
224 |
+
if choice == "mic":
|
225 |
+
return gr.update(sources="microphone", value=None, label="Microphone")
|
226 |
+
else:
|
227 |
+
return gr.update(sources="upload", value=None, label="File")
|
228 |
+
|
229 |
+
|
230 |
+
def toggle_diffusion(choice):
|
231 |
+
if choice == "MultiBand_Diffusion":
|
232 |
+
return [gr.update(visible=True)] * 2
|
233 |
+
else:
|
234 |
+
return [gr.update(visible=False)] * 2
|
235 |
+
# --- Gradio UI ---
|
236 |
+
|
237 |
+
def ui_full(launch_kwargs):
|
238 |
+
with gr.Blocks() as interface:
|
239 |
+
gr.Markdown(
|
240 |
+
"""
|
241 |
+
# MusicGen
|
242 |
+
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
243 |
+
a simple and controllable model for music generation
|
244 |
+
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
|
245 |
+
"""
|
246 |
+
)
|
247 |
+
with gr.Row():
|
248 |
+
with gr.Column():
|
249 |
+
with gr.Row():
|
250 |
+
text = gr.Text(label="Input Text", interactive=True)
|
251 |
+
with gr.Column():
|
252 |
+
radio = gr.Radio(["file", "mic"], value="file",
|
253 |
+
label="Condition on a melody (optional) File or Mic")
|
254 |
+
melody = gr.Audio(sources="upload", type="numpy", label="File",
|
255 |
+
interactive=True, elem_id="melody-input")
|
256 |
+
with gr.Row():
|
257 |
+
submit = gr.Button("Submit")
|
258 |
+
# _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) # Interrupt is now handled implicitly
|
259 |
+
with gr.Row():
|
260 |
+
model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small",
|
261 |
+
"facebook/musicgen-large", "facebook/musicgen-melody-large",
|
262 |
+
"facebook/musicgen-stereo-small", "facebook/musicgen-stereo-medium",
|
263 |
+
"facebook/musicgen-stereo-melody", "facebook/musicgen-stereo-large",
|
264 |
+
"facebook/musicgen-stereo-melody-large"],
|
265 |
+
label="Model", value="facebook/musicgen-melody", interactive=True)
|
266 |
+
model_path = gr.Text(label="Model Path (custom models)", interactive=False, visible=False) # Keep, but hide
|
267 |
+
with gr.Row():
|
268 |
+
decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
|
269 |
+
label="Decoder", value="Default", interactive=True)
|
270 |
+
with gr.Row():
|
271 |
+
duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
|
272 |
+
with gr.Row():
|
273 |
+
topk = gr.Number(label="Top-k", value=250, interactive=True)
|
274 |
+
topp = gr.Number(label="Top-p", value=0, interactive=True)
|
275 |
+
temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
|
276 |
+
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
|
277 |
+
with gr.Column():
|
278 |
+
output = gr.Video(label="Generated Music")
|
279 |
+
audio_output = gr.Audio(label="Generated Music (wav)", type='filepath')
|
280 |
+
diffusion_output = gr.Video(label="MultiBand Diffusion Decoder", visible=False)
|
281 |
+
audio_diffusion = gr.Audio(label="MultiBand Diffusion Decoder (wav)", type='filepath', visible=False)
|
282 |
+
|
283 |
+
submit.click(
|
284 |
+
toggle_diffusion, decoder, [diffusion_output, audio_diffusion], queue=False
|
285 |
+
).then(
|
286 |
+
predict_full,
|
287 |
+
inputs=[model, model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef],
|
288 |
+
outputs=[output, audio_output, diffusion_output, audio_diffusion]
|
289 |
+
)
|
290 |
+
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
|
291 |
+
|
292 |
+
gr.Examples(
|
293 |
+
fn=predict_full,
|
294 |
+
examples=[
|
295 |
+
[
|
296 |
+
"An 80s driving pop song with heavy drums and synth pads in the background",
|
297 |
+
"./assets/bach.mp3",
|
298 |
+
"facebook/musicgen-melody",
|
299 |
+
"Default"
|
300 |
+
],
|
301 |
+
[
|
302 |
+
"A cheerful country song with acoustic guitars",
|
303 |
+
"./assets/bolero_ravel.mp3",
|
304 |
+
"facebook/musicgen-melody",
|
305 |
+
"Default"
|
306 |
+
],
|
307 |
+
[
|
308 |
+
"90s rock song with electric guitar and heavy drums",
|
309 |
+
None,
|
310 |
+
"facebook/musicgen-medium",
|
311 |
+
"Default"
|
312 |
+
],
|
313 |
+
[
|
314 |
+
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
|
315 |
+
"./assets/bach.mp3",
|
316 |
+
"facebook/musicgen-melody",
|
317 |
+
"Default"
|
318 |
+
],
|
319 |
+
[
|
320 |
+
"lofi slow bpm electro chill with organic samples",
|
321 |
+
None,
|
322 |
+
"facebook/musicgen-medium",
|
323 |
+
"Default"
|
324 |
+
],
|
325 |
+
[
|
326 |
+
"Punk rock with loud drum and power guitar",
|
327 |
+
None,
|
328 |
+
"facebook/musicgen-medium",
|
329 |
+
"MultiBand_Diffusion"
|
330 |
+
],
|
331 |
+
],
|
332 |
+
inputs=[text, melody, model, decoder],
|
333 |
+
outputs=[output]
|
334 |
+
)
|
335 |
+
gr.Markdown(
|
336 |
+
"""
|
337 |
+
### More details
|
338 |
+
|
339 |
+
The model will generate a short music extract based on the description you provided.
|
340 |
+
The model can generate up to 30 seconds of audio in one pass.
|
341 |
+
|
342 |
+
The model was trained with description from a stock music catalog, descriptions that will work best
|
343 |
+
should include some level of details on the instruments present, along with some intended use case
|
344 |
+
(e.g. adding "perfect for a commercial" can somehow help).
|
345 |
+
|
346 |
+
Using one of the `melody` model (e.g. `musicgen-melody-*`), you can optionally provide a reference audio
|
347 |
+
from which a broad melody will be extracted.
|
348 |
+
The model will then try to follow both the description and melody provided.
|
349 |
+
For best results, the melody should be 30 seconds long (I know, the samples we provide are not...)
|
350 |
+
|
351 |
+
It is now possible to extend the generation by feeding back the end of the previous chunk of audio.
|
352 |
+
This can take a long time, and the model might lose consistency. The model might also
|
353 |
+
decide at arbitrary positions that the song ends.
|
354 |
+
|
355 |
+
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
|
356 |
+
An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
|
357 |
+
are generated each time.
|
358 |
+
|
359 |
+
We present 10 model variations:
|
360 |
+
1. facebook/musicgen-melody -- a music generation model capable of generating music condition
|
361 |
+
on text and melody inputs. **Note**, you can also use text only.
|
362 |
+
2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only.
|
363 |
+
3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only.
|
364 |
+
4
|