fossbk commited on
Commit
de21313
·
verified ·
1 Parent(s): 860cc24

thay thế gr.Box() bằng gr.Row() và gr.Column()

Browse files
Files changed (1) hide show
  1. app.py +18 -23
app.py CHANGED
@@ -20,7 +20,6 @@ from transforms import (
20
  import gradio as gr
21
  from huggingface_hub import hf_hub_download
22
 
23
-
24
  # Device on which to run the model
25
  # Set to cuda to load on GPU
26
  device = "cpu"
@@ -47,9 +46,7 @@ for k, v in imagenet_classnames.items():
47
  def get_index(num_frames, num_segments=8):
48
  seg_size = float(num_frames - 1) / num_segments
49
  start = int(seg_size / 2)
50
- offsets = np.array([
51
- start + int(np.round(seg_size * idx)) for idx in range(num_segments)
52
- ])
53
  return offsets
54
 
55
 
@@ -134,28 +131,26 @@ with demo:
134
  )
135
 
136
  with gr.Tab("Video"):
137
- with gr.Box():
138
- with gr.Row():
139
- with gr.Column():
140
- with gr.Row():
141
- input_video = gr.Video(label='Input Video').style(height=360)
142
- with gr.Row():
143
- submit_video_button = gr.Button('Submit')
144
- with gr.Column():
145
- label_video = gr.Label(num_top_classes=5)
146
  with gr.Row():
147
  example_videos = gr.Dataset(components=[input_video], samples=[['./videos/hitting_baseball.mp4'], ['./videos/hoverboarding.mp4'], ['./videos/yoga.mp4']])
148
 
149
  with gr.Tab("Image"):
150
- with gr.Box():
151
- with gr.Row():
152
- with gr.Column():
153
- with gr.Row():
154
- input_image = gr.Image(label='Input Image', type='pil').style(height=360)
155
- with gr.Row():
156
- submit_image_button = gr.Button('Submit')
157
- with gr.Column():
158
- label_image = gr.Label(num_top_classes=5)
159
  with gr.Row():
160
  example_images = gr.Dataset(components=[input_image], samples=[['./images/cat.png'], ['./images/dog.png'], ['./images/panda.png']])
161
 
@@ -170,4 +165,4 @@ with demo:
170
  submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image)
171
  example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components)
172
 
173
- demo.launch(enable_queue=True)
 
20
  import gradio as gr
21
  from huggingface_hub import hf_hub_download
22
 
 
23
  # Device on which to run the model
24
  # Set to cuda to load on GPU
25
  device = "cpu"
 
46
  def get_index(num_frames, num_segments=8):
47
  seg_size = float(num_frames - 1) / num_segments
48
  start = int(seg_size / 2)
49
+ offsets = np.array([start + int(np.round(seg_size * idx)) for idx in range(num_segments)])
 
 
50
  return offsets
51
 
52
 
 
131
  )
132
 
133
  with gr.Tab("Video"):
134
+ with gr.Row(): # Replace gr.Box() with gr.Row()
135
+ with gr.Column(): # Inside a column layout
136
+ with gr.Row(): # For individual row layout within a column
137
+ input_video = gr.Video(label='Input Video').style(height=360)
138
+ with gr.Row():
139
+ submit_video_button = gr.Button('Submit')
140
+ with gr.Column():
141
+ label_video = gr.Label(num_top_classes=5)
 
142
  with gr.Row():
143
  example_videos = gr.Dataset(components=[input_video], samples=[['./videos/hitting_baseball.mp4'], ['./videos/hoverboarding.mp4'], ['./videos/yoga.mp4']])
144
 
145
  with gr.Tab("Image"):
146
+ with gr.Row(): # Replace gr.Box() with gr.Row()
147
+ with gr.Column(): # Inside a column layout
148
+ with gr.Row():
149
+ input_image = gr.Image(label='Input Image', type='pil').style(height=360)
150
+ with gr.Row():
151
+ submit_image_button = gr.Button('Submit')
152
+ with gr.Column():
153
+ label_image = gr.Label(num_top_classes=5)
 
154
  with gr.Row():
155
  example_images = gr.Dataset(components=[input_image], samples=[['./images/cat.png'], ['./images/dog.png'], ['./images/panda.png']])
156
 
 
165
  submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image)
166
  example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components)
167
 
168
+ demo.launch(enable_queue=True)