Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
# --- Performance Improvement ---
|
7 |
+
# 1. Determine the number of available CPU cores.
|
8 |
+
num_cpu_cores = os.cpu_count()
|
9 |
+
|
10 |
+
# 2. Configure PyTorch to use all available CPU cores for its operations.
|
11 |
+
# This is crucial for speeding up model inference on a CPU.
|
12 |
+
if num_cpu_cores is not None:
|
13 |
+
torch.set_num_threads(num_cpu_cores)
|
14 |
+
print(f"✅ PyTorch is configured to use {num_cpu_cores} CPU cores.")
|
15 |
+
else:
|
16 |
+
print("Could not determine the number of CPU cores. Using default settings.")
|
17 |
+
|
18 |
+
|
19 |
+
# Initialize the audio classification pipeline
|
20 |
+
# We specify device=-1 to explicitly enforce running on the CPU.
|
21 |
+
pipe = pipeline(
|
22 |
+
"audio-classification",
|
23 |
+
model="MIT/ast-finetuned-audioset-10-10-0.4593",
|
24 |
+
device=-1 # -1 for CPU, 0 for the first GPU, etc.
|
25 |
+
)
|
26 |
+
|
27 |
+
# Define the function to classify an audio file
|
28 |
+
def classify_audio(audio_filepath):
|
29 |
+
"""
|
30 |
+
Takes an audio file path, classifies it using the pipeline,
|
31 |
+
and returns a dictionary of top labels and their scores.
|
32 |
+
"""
|
33 |
+
if audio_filepath is None:
|
34 |
+
return "Please upload an audio file first."
|
35 |
+
|
36 |
+
# The pipeline handles the loading, preprocessing, and inference.
|
37 |
+
result = pipe(audio_filepath)
|
38 |
+
# The output is formatted for the Gradio Label component.
|
39 |
+
return {label['label']: label['score'] for label in result}
|
40 |
+
|
41 |
+
# Set up the Gradio interface
|
42 |
+
app = gr.Interface(
|
43 |
+
fn=classify_audio, # Function to classify audio
|
44 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio"), # Input for uploading an audio file
|
45 |
+
outputs=gr.Label(num_top_classes=3, label="Top 3 Predictions"), # Output with top 3 classification results
|
46 |
+
title="High-Performance Audio Classification (CPU)", # App title
|
47 |
+
description="Upload an audio file to classify it. This app is optimized to run on all available CPU cores.",
|
48 |
+
examples=[
|
49 |
+
# You can add example audio files here if you have them locally
|
50 |
+
# ["path/to/your/example_audio_1.wav"],
|
51 |
+
# ["path/to/your/example_audio_2.mp3"],
|
52 |
+
]
|
53 |
+
)
|
54 |
+
|
55 |
+
# Launch the app
|
56 |
+
if __name__ == "__main__":
|
57 |
+
app.launch()
|