Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,31 +5,30 @@ import tempfile
|
|
5 |
|
6 |
BACKEND_URL = os.environ.get("BACKEND_URL", "").strip()
|
7 |
|
8 |
-
# Create persistent client
|
9 |
try:
|
10 |
client = Client(BACKEND_URL, headers={"ngrok-skip-browser-warning": "true"})
|
11 |
backend_available = True
|
12 |
-
except
|
13 |
client = None
|
14 |
backend_available = False
|
15 |
|
16 |
def process_media(file_obj, webcam_img, model_type, conf_thresh, max_dets, task_type):
|
17 |
-
"""Process media
|
18 |
if not client:
|
19 |
return [gr.update()] * 5
|
20 |
|
21 |
try:
|
22 |
-
# Convert webcam PIL to file path
|
23 |
webcam_path = None
|
24 |
if webcam_img is not None:
|
25 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
26 |
webcam_img.save(tmp, 'PNG')
|
27 |
webcam_path = tmp.name
|
28 |
|
29 |
-
#
|
30 |
result = client.predict(
|
31 |
-
uploaded_file_obj=file_obj,
|
32 |
-
webcam_image_pil=webcam_path,
|
33 |
model_type_choice=model_type,
|
34 |
conf_threshold_ui=conf_thresh,
|
35 |
max_detections_ui=max_dets,
|
@@ -37,141 +36,97 @@ def process_media(file_obj, webcam_img, model_type, conf_thresh, max_dets, task_
|
|
37 |
api_name="/process_media"
|
38 |
)
|
39 |
|
40 |
-
# Cleanup
|
41 |
if webcam_path and os.path.exists(webcam_path):
|
42 |
os.unlink(webcam_path)
|
43 |
|
44 |
return result
|
45 |
|
46 |
except Exception as e:
|
47 |
-
print(f"
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
"""Handle file upload preview"""
|
52 |
-
if not client or not file_obj:
|
53 |
-
return [gr.update()] * 5
|
54 |
-
|
55 |
-
try:
|
56 |
-
return client.predict(
|
57 |
-
file_obj=file_obj,
|
58 |
-
api_name="/handle_file_upload_preview"
|
59 |
-
)
|
60 |
-
except:
|
61 |
-
return [gr.update()] * 5
|
62 |
-
|
63 |
-
def handle_webcam_capture(webcam_img):
|
64 |
-
"""Handle webcam capture"""
|
65 |
-
if not client or not webcam_img:
|
66 |
-
return [gr.update()] * 4
|
67 |
-
|
68 |
-
try:
|
69 |
-
# Save PIL to temp file
|
70 |
-
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
71 |
-
webcam_img.save(tmp, 'PNG')
|
72 |
-
temp_path = tmp.name
|
73 |
-
|
74 |
-
result = client.predict(
|
75 |
-
snapshot_from_feed=temp_path,
|
76 |
-
api_name="/handle_webcam_capture"
|
77 |
-
)
|
78 |
-
|
79 |
-
# Cleanup
|
80 |
-
if os.path.exists(temp_path):
|
81 |
-
os.unlink(temp_path)
|
82 |
-
|
83 |
-
return result
|
84 |
-
except:
|
85 |
-
return [gr.update()] * 4
|
86 |
-
|
87 |
-
def clear_all():
|
88 |
-
"""Clear all inputs and outputs"""
|
89 |
-
if not client:
|
90 |
-
return [gr.update(value=None)] * 7
|
91 |
-
|
92 |
-
try:
|
93 |
-
return client.predict(api_name="/clear_all_media_and_outputs")
|
94 |
-
except:
|
95 |
-
return [gr.update(value=None)] * 7
|
96 |
-
|
97 |
-
# Build interface
|
98 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
99 |
-
gr.Markdown("# 🐵 PrimateFace Detection, Pose
|
100 |
|
101 |
if not backend_available:
|
102 |
gr.Markdown("### 🔴 GPU Server Offline")
|
103 |
else:
|
104 |
with gr.Row():
|
105 |
-
with gr.Column(
|
106 |
with gr.Tabs():
|
107 |
-
with gr.TabItem("Upload
|
108 |
-
input_file = gr.File(label="Upload Image
|
109 |
-
|
110 |
-
|
111 |
|
112 |
with gr.TabItem("Webcam"):
|
113 |
-
gr.Markdown("Click on feed or press Enter to capture")
|
114 |
input_webcam = gr.Image(sources=["webcam"], type="pil")
|
115 |
-
display_raw_image_webcam = gr.Image(label="Captured Snapshot Preview", visible=False)
|
116 |
|
117 |
-
|
118 |
|
119 |
-
with gr.Column(
|
120 |
-
gr.Markdown("###
|
121 |
-
|
122 |
-
|
123 |
|
124 |
# Examples
|
125 |
gr.Examples(
|
126 |
-
examples=[
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
],
|
134 |
inputs=input_file
|
135 |
)
|
136 |
|
137 |
-
|
138 |
|
139 |
# Controls
|
140 |
model_choice = gr.Radio(["MMDetection"], value="MMDetection", visible=False)
|
141 |
task_type = gr.Dropdown(
|
142 |
["Face Detection", "Face Pose Estimation", "Gaze Estimation [experimental]"],
|
143 |
-
value="Face Detection"
|
144 |
-
label="Select Task"
|
145 |
)
|
146 |
-
conf_threshold = gr.Slider(0.05, 0.95, 0.25, step=0.05, label="Confidence
|
147 |
max_detections = gr.Slider(1, 10, 3, step=1, label="Max Detections")
|
148 |
|
149 |
-
#
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
display_processed_image, display_processed_video]
|
155 |
-
)
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
inputs=[input_file, input_webcam, model_choice, conf_threshold, max_detections, task_type],
|
167 |
-
outputs=[
|
168 |
-
display_processed_image, display_processed_video]
|
169 |
)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
175 |
)
|
176 |
|
177 |
demo.launch()
|
|
|
5 |
|
6 |
BACKEND_URL = os.environ.get("BACKEND_URL", "").strip()
|
7 |
|
|
|
8 |
try:
|
9 |
client = Client(BACKEND_URL, headers={"ngrok-skip-browser-warning": "true"})
|
10 |
backend_available = True
|
11 |
+
except:
|
12 |
client = None
|
13 |
backend_available = False
|
14 |
|
15 |
def process_media(file_obj, webcam_img, model_type, conf_thresh, max_dets, task_type):
|
16 |
+
"""Process media - backend expects both file and webcam paths"""
|
17 |
if not client:
|
18 |
return [gr.update()] * 5
|
19 |
|
20 |
try:
|
21 |
+
# Convert webcam PIL to file path if present
|
22 |
webcam_path = None
|
23 |
if webcam_img is not None:
|
24 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
25 |
webcam_img.save(tmp, 'PNG')
|
26 |
webcam_path = tmp.name
|
27 |
|
28 |
+
# Backend expects both parameters - use None for missing one
|
29 |
result = client.predict(
|
30 |
+
uploaded_file_obj=file_obj if file_obj else None,
|
31 |
+
webcam_image_pil=webcam_path if webcam_path else None,
|
32 |
model_type_choice=model_type,
|
33 |
conf_threshold_ui=conf_thresh,
|
34 |
max_detections_ui=max_dets,
|
|
|
36 |
api_name="/process_media"
|
37 |
)
|
38 |
|
39 |
+
# Cleanup
|
40 |
if webcam_path and os.path.exists(webcam_path):
|
41 |
os.unlink(webcam_path)
|
42 |
|
43 |
return result
|
44 |
|
45 |
except Exception as e:
|
46 |
+
print(f"Process error: {e}")
|
47 |
+
# Return error message in processed image slot
|
48 |
+
return [
|
49 |
+
gr.update(), # raw image file
|
50 |
+
gr.update(), # raw video file
|
51 |
+
gr.update(), # raw image webcam
|
52 |
+
gr.update(value=None, visible=True), # processed image - show error
|
53 |
+
gr.update() # processed video
|
54 |
+
]
|
55 |
|
56 |
+
# Simplified interface without complex preview forwarding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
58 |
+
gr.Markdown("# 🐵 PrimateFace Detection, Pose & Gaze Demo")
|
59 |
|
60 |
if not backend_available:
|
61 |
gr.Markdown("### 🔴 GPU Server Offline")
|
62 |
else:
|
63 |
with gr.Row():
|
64 |
+
with gr.Column():
|
65 |
with gr.Tabs():
|
66 |
+
with gr.TabItem("Upload"):
|
67 |
+
input_file = gr.File(label="Upload Image/Video")
|
68 |
+
# Simple local preview
|
69 |
+
preview_img = gr.Image(label="Preview", visible=False)
|
70 |
|
71 |
with gr.TabItem("Webcam"):
|
|
|
72 |
input_webcam = gr.Image(sources=["webcam"], type="pil")
|
|
|
73 |
|
74 |
+
clear_btn = gr.Button("Clear All")
|
75 |
|
76 |
+
with gr.Column():
|
77 |
+
gr.Markdown("### Results")
|
78 |
+
output_image = gr.Image(label="Processed", visible=False)
|
79 |
+
output_video = gr.Video(label="Processed", visible=False)
|
80 |
|
81 |
# Examples
|
82 |
gr.Examples(
|
83 |
+
examples=[["images/" + f] for f in [
|
84 |
+
"allocebus_000003.jpeg",
|
85 |
+
"tarsius_000120.jpeg",
|
86 |
+
"nasalis_proboscis-monkey.png",
|
87 |
+
"macaca_000032.jpeg",
|
88 |
+
"mandrillus_000011.jpeg",
|
89 |
+
"pongo_000006.jpeg"
|
90 |
+
]],
|
91 |
inputs=input_file
|
92 |
)
|
93 |
|
94 |
+
submit_btn = gr.Button("Detect Faces", variant="primary")
|
95 |
|
96 |
# Controls
|
97 |
model_choice = gr.Radio(["MMDetection"], value="MMDetection", visible=False)
|
98 |
task_type = gr.Dropdown(
|
99 |
["Face Detection", "Face Pose Estimation", "Gaze Estimation [experimental]"],
|
100 |
+
value="Face Detection"
|
|
|
101 |
)
|
102 |
+
conf_threshold = gr.Slider(0.05, 0.95, 0.25, step=0.05, label="Confidence")
|
103 |
max_detections = gr.Slider(1, 10, 3, step=1, label="Max Detections")
|
104 |
|
105 |
+
# Simple local preview for uploaded files
|
106 |
+
def show_preview(file):
|
107 |
+
if file and file.name.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
|
108 |
+
return gr.update(value=file, visible=True)
|
109 |
+
return gr.update(visible=False)
|
|
|
|
|
110 |
|
111 |
+
input_file.change(show_preview, inputs=[input_file], outputs=[preview_img])
|
112 |
+
|
113 |
+
# Main processing - only use last 3 outputs (skip raw previews)
|
114 |
+
def process_and_extract_outputs(*args):
|
115 |
+
result = process_media(*args)
|
116 |
+
# Return only processed outputs
|
117 |
+
return result[-2:] # Just processed image and video
|
118 |
|
119 |
+
submit_btn.click(
|
120 |
+
process_and_extract_outputs,
|
121 |
inputs=[input_file, input_webcam, model_choice, conf_threshold, max_detections, task_type],
|
122 |
+
outputs=[output_image, output_video]
|
|
|
123 |
)
|
124 |
|
125 |
+
# Simple clear
|
126 |
+
clear_btn.click(
|
127 |
+
lambda: [gr.update(value=None), gr.update(value=None), gr.update(visible=False),
|
128 |
+
gr.update(visible=False), gr.update(visible=False)],
|
129 |
+
outputs=[input_file, input_webcam, preview_img, output_image, output_video]
|
130 |
)
|
131 |
|
132 |
demo.launch()
|