Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from scipy.spatial.distance import cosine
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# --- Simulate a small pre-trained Word2Vec model ---
|
7 |
+
# Dummy word vectors for demonstration
|
8 |
+
dummy_word_vectors = {
|
9 |
+
'cat': np.array([0.9, 0.7, 0.1, 0.2]),
|
10 |
+
'dog': np.array([0.8, 0.8, 0.3, 0.1]),
|
11 |
+
'kitten': np.array([0.85, 0.75, 0.15, 0.25]),
|
12 |
+
'puppy': np.array([0.75, 0.85, 0.25, 0.15]),
|
13 |
+
'fish': np.array([0.1, 0.2, 0.9, 0.8]),
|
14 |
+
'bird': np.array([0.2, 0.1, 0.8, 0.9]),
|
15 |
+
'ocean': np.array([0.05, 0.15, 0.95, 0.85]),
|
16 |
+
'sky': np.array([0.25, 0.05, 0.85, 0.95]),
|
17 |
+
'run': np.array([0.6, 0.3, 0.1, 0.1]),
|
18 |
+
'walk': np.array([0.55, 0.35, 0.15, 0.05]),
|
19 |
+
'jump': np.array([0.65, 0.25, 0.05, 0.15]),
|
20 |
+
'king': np.array([0.9, 0.1, 0.1, 0.8]),
|
21 |
+
'queen': np.array([0.8, 0.2, 0.2, 0.9]),
|
22 |
+
'man': np.array([0.9, 0.15, 0.05, 0.7]),
|
23 |
+
'woman': np.array([0.85, 0.1, 0.15, 0.85])
|
24 |
+
}
|
25 |
+
|
26 |
+
# Normalize vectors (important for cosine similarity)
|
27 |
+
for word, vec in dummy_word_vectors.items():
|
28 |
+
dummy_word_vectors[word] = vec / np.linalg.norm(vec)
|
29 |
+
|
30 |
+
# --- Function to find nearest neighbors ---
|
31 |
+
def find_nearest_neighbors(search_word_input):
|
32 |
+
search_word = search_word_input.lower()
|
33 |
+
|
34 |
+
if search_word not in dummy_word_vectors:
|
35 |
+
return (
|
36 |
+
pd.DataFrame([{"Message": f"'{search_word}' not found in our dummy vocabulary. Try one of these: {', '.join(list(dummy_word_vectors.keys()))}"}]),
|
37 |
+
"Warning: Word not found!"
|
38 |
+
)
|
39 |
+
|
40 |
+
target_vector = dummy_word_vectors[search_word]
|
41 |
+
similarities = []
|
42 |
+
for word, vector in dummy_word_vectors.items():
|
43 |
+
if word != search_word: # Don't compare a word to itself
|
44 |
+
similarity = 1 - cosine(target_vector, vector)
|
45 |
+
similarities.append({"Word": word, "Cosine Similarity": similarity})
|
46 |
+
|
47 |
+
results_df = pd.DataFrame(similarities).sort_values(
|
48 |
+
by="Cosine Similarity", ascending=False
|
49 |
+
).reset_index(drop=True)
|
50 |
+
|
51 |
+
# Format the DataFrame for better display in Gradio
|
52 |
+
results_df["Cosine Similarity"] = results_df["Cosine Similarity"].round(4)
|
53 |
+
results_df.columns = ["Neighbor Word", "Similarity Score"] # Rename for UI clarity
|
54 |
+
|
55 |
+
message = f"Found nearest neighbors for '{search_word}'!"
|
56 |
+
return results_df, message
|
57 |
+
|
58 |
+
# --- Gradio Interface ---
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=find_nearest_neighbors,
|
61 |
+
inputs=gr.Textbox(
|
62 |
+
label="Enter a word to explore its neighbors:",
|
63 |
+
placeholder="e.g., cat, king, fish"
|
64 |
+
),
|
65 |
+
outputs=[
|
66 |
+
gr.DataFrame(
|
67 |
+
headers=["Neighbor Word", "Similarity Score"],
|
68 |
+
row_count=5, # Display up to 5 rows by default
|
69 |
+
wrap=True,
|
70 |
+
interactive=False,
|
71 |
+
label="Nearest Neighbors"
|
72 |
+
),
|
73 |
+
gr.Markdown(
|
74 |
+
label="Status"
|
75 |
+
)
|
76 |
+
],
|
77 |
+
title="🚀 Word Vector Explorer (Gradio POC)",
|
78 |
+
description=(
|
79 |
+
"Discover the semantic neighbors of words using word embeddings! "
|
80 |
+
"Type a word, and see its closest companions in the vector space."
|
81 |
+
"<br>_Note: This POC uses dummy word vectors. In a full version, this would connect to a large pre-trained Word2Vec model!_"
|
82 |
+
),
|
83 |
+
allow_flagging="never", # Optional: disables the "Flag" button
|
84 |
+
examples=[
|
85 |
+
["cat"],
|
86 |
+
["king"],
|
87 |
+
["fish"],
|
88 |
+
["run"]
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
iface.launch()
|