Spaces:
Running
Running
File size: 19,898 Bytes
5f25c87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
Build a gradio engineering calculator web application that provides standard, scientific, programming, and ngineering calculator functionality, as well as unit converters between various units of measurement and currencies. The users can use the calculator in different interface modes: 1.) standard - standard calculator button functionality which offers basic operations and evaluates commands immediately as they are entered. 2.) scientific - scientific calculator button functionality which offers basic operations and evaluates commands immediately as they are entered. 3.) engineering - engineering calculation functions 4.) programming - functionality which offers common mathematical operations for developers including conversion between common bases, scripting based calculations using input text areas and output text area. Common functionality for all modes: * Calculation history and memory capabilities. * Infinite precision for basic arithmetic operations (addition, subtraction, multiplication, division) so that calculations never lose precision. * Embedded AI chat interface Calculator Key Mapping: Addition: (x + y) Addition, also known as summing or, more colloquially, “plus” is used to sum numbers together. Subtraction: (x - y) Subtraction, the “minus” sign, or sometimes difference, is used to find the numerical separation between two numbers, thus the term “difference”. Multiplication: (x * y) Multiplication, the product or “times” is represented sometimes by an “x” and sometimes by an asterisk “*”. Division: (x / y) Division, sometimes referred to as the quotient, is sometimes shown as a fraction, a “/” or the “÷” symbol. Which is supposedly called an “obelus” - who knew? Scientific functions: In mathematics and in various fields of engineering, trigonometric functions are frequently used to solve different problems. It could be as simple as solving an unknown value of a right-angled triangle or solving the instantaneous power absorbed by an electrical element. Here are the trigonometric functions that you will encounter as you study mathematics and engineering: Sine In a right-angled triangle, the sine function can be used to relate the angle to the ratio of the length of the side opposite the angle and the hypotenuse. The sine function can be used in this scientific calculator by clicking the “sin” button. Cosecant The cosecant function is a reciprocal of the sine function. Cosine The cosine function is another trigonometric function that can be used to relate the angle of a right triangle to the ratio of the length of the side adjacent to the angle and the hypotenuse. It can be used in this scientific calculator by clicking the “cos” button. Secant The secant function is a reciprocal of the cosine function. Tangent The tangent function relates the angle of a right-angled triangle to the ratio of the length of the side opposite the angle and the side adjacent to the angle. This function can be used in this scientific calculator by clicking the “tan” button. Cotangent The cotangent function is a reciprocal of the tangent function. Inverse Sine The inverse sine (arcsine) trigonometric function can be used to determine the angle of a sine value. This can be used in this scientific calculator by clicking the “asin” button. The domain of an inverse sine function is from -1 to +1 and the range is from -90° to +90°. Inverse Cosine The inverse cosine (arccosine) trigonometric function can be used to determine the angle of a cosine value. To use this function, just click the “acos” button of this scientific calculator. The domain of the arccosine function is just the same with the arcsine function but its range is from 0 to +180°. Inverse Tangent The inverse tangent (arctangent) trigonometric function can be used to determine the angle of a tangent value from a domain covering all real numbers. The range of the arctangent function is from -90° to +90°. To use this function, click the “atan” button of this scientific calculator. Other Functions: Imaginary Unit Whenever you multiply a negative number with a negative number, the result is a positive number. Specifically, any number squared will be a positive number, as it’ll either be a positive number multiplied by itself, yielding another positive number, or a negative number multiplied by itself, again yielding a positive number. Yet sometimes, you need something that, somehow, when multiplied by itself, gives a negative number. Mathematicians have called this number “i”, wherein (i2 = -1) To avoid confusion with the symbol for electrical current, in electrical engineering we frequently use “j” instead of “i”. In the calculator, simply use it as you would any other number, though you can’t use your keyboard to put it in - click on the bolded “i” box instead. Factorial Factorials are odd beasts that don’t show up very frequently but are important when you need them. Factorial is where you take a positive number, multiply it by... for engineering mode the UI for Engineering mode should have a drop down combobox that updates the interface below the combobox to enable users to perform the engineering function (calculation). The functions should include these Engineering Functions: 3Ph Equivalent Impedance - calculates equivalent impedance and line currents for specified 5-wire (A,B,C,N,PE) system. source code for the calculations are provided for you, use it.: import numpy as np import pandas as pd from typing import Dict, List, Tuple, Union from dataclasses import dataclass import matplotlib.pyplot as plt import seaborn as sns @dataclass class ConductorParams: #Data class for conductor electrical parameters""" resistance: float # Ω/mile gmr: float # feet (Geometric Mean Radius) @dataclass class Coordinate: #Data class for conductor coordinates””” x: float # feet y: float # feet class PowerSystemImpedanceCalculator: #Advanced impedance calculator for 5-wire power systems using modified Carson’s equations #and Kron reduction technique. #The calculator implements industry-standard methods for computing equivalent impedance #matrices in multi-conductor transmission and distribution lines. # Carson's equation constants for 60 Hz, 100 Ω⋅m earth resistivity CARSON_REAL_CONSTANT = 0.09530 # Ω/mile CARSON_IMAG_COEFFICIENT = 0.12134 # Ω/mile CARSON_IMAG_CONSTANT = 7.93402 # dimensionless def __init__(self): """Initialize the calculator with default conductor labels""" self.conductor_labels = ['a', 'b', 'c', 'n', 'pe'] self.phase_labels = ['a', 'b', 'c'] def calculate_distance_from_coordinates(self, coord1: Coordinate, coord2: Coordinate) -> float: """ Calculate Euclidean distance between two conductor coordinates. Args: coord1: First conductor coordinate coord2: Second conductor coordinate Returns: Distance in feet """ dx = coord1.x - coord2.x dy = coord1.y - coord2.y return np.sqrt(dx**2 + dy**2) def calculate_all_distances_from_coordinates(self, coordinates: Dict[str, Coordinate]) -> Dict[str, float]: """ Calculate all pairwise distances from conductor coordinates. Args: coordinates: Dictionary mapping conductor labels to coordinates Returns: Dictionary of pairwise distances with keys like 'ab', 'ac', etc. """ distances = {} conductors = self.conductor_labels # Generate all unique pairs for i, cond1 in enumerate(conductors): for j, cond2 in enumerate(conductors[i+1:], i+1): key = f"{cond1}{cond2}" distance = self.calculate_distance_from_coordinates( coordinates[cond1], coordinates[cond2] ) distances[key] = distance return distances def calculate_primitive_impedance_matrix(self, distances: Dict[str, float], conductor_params: Dict[str, ConductorParams]) -> np.ndarray: """ Calculate the 5×5 primitive impedance matrix using modified Carson's equations. The primitive matrix includes all conductors (phases, neutral, PE) before reduction. Self-impedances account for conductor resistance and earth return effects. Mutual impedances account for electromagnetic coupling and earth return effects. Args: distances: Dictionary of pairwise distances between conductors conductor_params: Dictionary of conductor electrical parameters Returns: 5×5 complex impedance matrix [Ω/mile] """ n_conductors = len(self.conductor_labels) matrix = np.zeros((n_conductors, n_conductors), dtype=complex) # Calculate self-impedances (diagonal elements) for i, conductor in enumerate(self.conductor_labels): params = conductor_params[conductor] # Modified Carson's equation for self-impedance real_part = params.resistance + self.CARSON_REAL_CONSTANT imag_part = self.CARSON_IMAG_COEFFICIENT * ( np.log(1.0 / params.gmr) + self.CARSON_IMAG_CONSTANT ) matrix[i, i] = complex(real_part, imag_part) # Calculate mutual impedances (off-diagonal elements) # Mapping from matrix indices to distance dictionary keys distance_map = { (0, 1): 'ab', (0, 2): 'ac', (0, 3): 'an', (0, 4): 'ape', (1, 2): 'bc', (1, 3): 'bn', (1, 4): 'bpe', (2, 3): 'cn', (2, 4): 'cpe', (3, 4): 'npe' } for (i, j), distance_key in distance_map.items(): distance = distances[distance_key] # Modified Carson's equation for mutual impedance real_part = self.CARSON_REAL_CONSTANT imag_part = self.CARSON_IMAG_COEFFICIENT * ( np.log(1.0 / distance) + self.CARSON_IMAG_CONSTANT ) mutual_impedance = complex(real_part, imag_part) matrix[i, j] = mutual_impedance matrix[j, i] = mutual_impedance # Symmetry return matrix def apply_kron_reduction(self, primitive_matrix: np.ndarray) -> np.ndarray: """ Apply Kron reduction to eliminate neutral and PE conductors from the impedance matrix. Kron reduction preserves the electrical behavior of the phase conductors while eliminating the neutral and protective earth conductors from the analysis. The reduction formula is: Z_abc = Z_pp - Z_pq @ Z_qq^(-1) @ Z_qp Args: primitive_matrix: 5×5 primitive impedance matrix Returns: 3×3 reduced impedance matrix for phase conductors only [Ω/mile] """ # Extract sub-matrices for Kron reduction # Z_pp: phase-to-phase impedances (3×3) - indices 0,1,2 (a,b,c) # Z_qq: neutral/PE impedances (2×2) - indices 3,4 (n,pe) # Z_pq: phase-to-neutral/PE coupling (3×2) # Z_qp: neutral/PE-to-phase coupling (2×3) - transpose of Z_pq Z_pp = primitive_matrix[0:3, 0:3] # Phase conductors Z_qq = primitive_matrix[3:5, 3:5] # Neutral and PE Z_pq = primitive_matrix[0:3, 3:5] # Phase to neutral/PE coupling Z_qp = primitive_matrix[3:5, 0:3] # Neutral/PE to phase coupling # Calculate Z_qq inverse using robust numerical methods try: Z_qq_inv = np.linalg.inv(Z_qq) except np.linalg.LinAlgError: # Fallback to pseudo-inverse if matrix is singular Z_qq_inv = np.linalg.pinv(Z_qq) print("Warning: Z_qq matrix is singular, using pseudo-inverse") # Apply Kron reduction formula # Z_abc = Z_pp - Z_pq @ Z_qq^(-1) @ Z_qp correction_term = Z_pq @ Z_qq_inv @ Z_qp reduced_matrix = Z_pp - correction_term return reduced_matrix def calculate_impedance_from_distances(self, distances: Dict[str, float], conductor_params: Dict[str, ConductorParams]) -> Tuple[np.ndarray, np.ndarray]: """ Complete impedance calculation from conductor distances. Args: distances: Dictionary of pairwise conductor distances conductor_params: Dictionary of conductor electrical parameters Returns: Tuple of (primitive_matrix, reduced_matrix) """ primitive_matrix = self.calculate_primitive_impedance_matrix(distances, conductor_params) reduced_matrix = self.apply_kron_reduction(primitive_matrix) return primitive_matrix, reduced_matrix def calculate_impedance_from_coordinates(self, coordinates: Dict[str, Coordinate], conductor_params: Dict[str, ConductorParams]) -> Tuple[np.ndarray, np.ndarray, Dict[str, float]]: """ Complete impedance calculation from conductor coordinates. Args: coordinates: Dictionary mapping conductor labels to coordinates conductor_params: Dictionary of conductor electrical parameters Returns: Tuple of (primitive_matrix, reduced_matrix, calculated_distances) """ distances = self.calculate_all_distances_from_coordinates(coordinates) primitive_matrix, reduced_matrix = self.calculate_impedance_from_distances(distances, conductor_params) return primitive_matrix, reduced_matrix, distances def format_complex_matrix(self, matrix: np.ndarray, precision: int = 6) -> List[List[str]]: """ Format complex matrix for readable display. Args: matrix: Complex numpy array precision: Number of decimal places Returns: List of lists containing formatted complex number strings """ formatted = [] for row in matrix: formatted_row = [] for element in row: real = f"{element.real:.{precision}f}" imag = f"{element.imag:.{precision}f}" sign = "+" if element.imag >= 0 else "" formatted_row.append(f"{real} {sign} j{imag}") formatted.append(formatted_row) return formatted def create_impedance_dataframe(self, matrix: np.ndarray, labels: List[str]) -> pd.DataFrame: """ Create a pandas DataFrame from impedance matrix for easier analysis. Args: matrix: Complex impedance matrix labels: Row/column labels Returns: DataFrame with complex impedance values """ return pd.DataFrame(matrix, index=labels, columns=labels) def analyze_matrix_properties(self, matrix: np.ndarray) -> Dict[str, Union[float, bool]]: """ Analyze impedance matrix properties for engineering insights. Args: matrix: Complex impedance matrix Returns: Dictionary containing matrix analysis results """ properties = {} # Basic properties properties['condition_number'] = np.linalg.cond(matrix) properties['determinant'] = np.linalg.det(matrix) properties['is_symmetric'] = np.allclose(matrix, matrix.T, rtol=1e-10) properties['is_positive_definite'] = np.all(np.linalg.eigvals(matrix.real) > 0) # Eigenvalue analysis eigenvalues = np.linalg.eigvals(matrix) properties['min_eigenvalue_real'] = np.min(eigenvalues.real) properties['max_eigenvalue_real'] = np.max(eigenvalues.real) properties['eigenvalue_spread'] = properties['max_eigenvalue_real'] / properties['min_eigenvalue_real'] # Impedance magnitude analysis magnitudes = np.abs(matrix) properties['min_impedance_magnitude'] = np.min(magnitudes) properties['max_impedance_magnitude'] = np.max(magnitudes) properties['avg_self_impedance_magnitude'] = np.mean(np.abs(np.diag(matrix))) return properties def plot_impedance_heatmap(self, matrix: np.ndarray, labels: List[str], title: str = "Impedance Matrix"): """ Create a heatmap visualization of impedance matrix magnitudes. Args: matrix: Complex impedance matrix labels: Conductor labels title: Plot title """ # Create magnitude matrix for visualization magnitude_matrix = np.abs(matrix) plt.figure(figsize=(10, 8)) sns.heatmap(magnitude_matrix, annot=True, fmt='.4f', xticklabels=labels, yticklabels=labels, cmap='viridis', cbar_kws={'label': 'Impedance Magnitude (Ω/mile)'}) plt.title(f"{title} - Magnitude") plt.tight_layout() plt.show() # Example usage and test functions def create_test_data(): #Create sample data for testing the calculator””” # Sample conductor parameters (typical values) conductor_params = { 'a': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR 'b': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR 'c': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR 'n': ConductorParams(resistance=8.0, gmr=0.012), # #6 ACSR 'pe': ConductorParams(resistance=8.0, gmr=0.012) # #6 ACSR } # Sample coordinates (typical distribution line configuration) coordinates = { 'a': Coordinate(x=0, y=42), 'b': Coordinate(x=23.5, y=42), 'c': Coordinate(x=47, y=42), 'n': Coordinate(x=10, y=74), 'pe': Coordinate(x=37, y=72) } return conductor_params, coordinates def run_comprehensive_test(): #Run comprehensive test of the impedance calculator print("=== Power System Impedance Calculator Test ===\n") # Initialize calculator calc = PowerSystemImpedanceCalculator() # Create test data conductor_params, coordinates = create_test_data() print("1. Input Parameters:") print(" Conductor Parameters:") for label, params in conductor_params.items(): print(f" {label.upper()}: R={params.resistance:.3f} Ω/mile, GMR={params.gmr:.3f} ft") print("\n Conductor Coordinates:") for label, coord in coordinates.items(): print(f" {label.upper()}: ({coord.x:.1f}, {coord.y:.1f}) ft") # Calculate impedances print("\n2. Performing Calculations...") primitive_matrix, reduced_matrix, distances = calc.calculate_impedance_from_coordinates( coordinates, conductor_params ) print(" ✓ Calculated distances from coordinates") print(" ✓ Built primitive impedance matrix") print(" ✓ Applied Kron reduction") # Display calculated distances print("\n3. Calculated Distances:") for pair, distance in distances.items(): conductor1, conductor2 = pair[0].upper(), pair[1].upper() print(f" {conductor1}-{conductor2}: {distance:.3f} ft") # Display results print("\n4. Primitive Impedance Matrix (5×5) [Ω/mile]:") primitive_df = calc.create_impedance_dataframe(primitive_matrix, calc.conductor_labels) for i, label in enumerate(calc.conductor_labels): print(f" {label.upper()}: ", end="") for j in range(5): z = primitive_matrix[i, j] print(f"{z.real:>8.3f}{z.imag:>+8.3f}j ", end="") print() print("\n5. Reduced Phase Impedance Matrix (3×3) [Ω/mile]:") reduced_df = calc.create_impedance_dataframe(reduced_matrix, calc.phase_labels) for i, label in enumerate(calc.phase_labels): print(f" {label.upper()}: ", end="") for j in range(3): z = reduced_matrix[i, j] print(f"{z.real:>8.3f}{z.imag:>+8.3f}j ", end="") print() # Matrix analysis print("\n6. Matrix Analysis:") properties = calc.analyze_matrix_properties(reduced_matrix) print(f" Condition Number: {properties['condition_number']:.2e}") print(f" Is Symmetric: {properties['is_symmetric']}") print(f" Average Self-Impedance Magnitude: {properties['avg_self_impedance_magnitude']:.5f} Ω/mile") print(f" Eigenvalue Spread: {properties['eigenvalue_spread']:.2f}") print("\n7. Test completed successfully!")ß |