Spaces:
Running
Running
File size: 14,434 Bytes
5f25c87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Union
from dataclasses import dataclass
import matplotlib.pyplot as plt
import seaborn as sns
@dataclass
class ConductorParams:
"""Data class for conductor electrical parameters"""
resistance: float # Ω/mile
gmr: float # feet (Geometric Mean Radius)
@dataclass
class Coordinate:
"""Data class for conductor coordinates"""
x: float # feet
y: float # feet
class PowerSystemImpedanceCalculator:
"""
Advanced impedance calculator for 5-wire power systems using modified Carson's equations
and Kron reduction technique.
The calculator implements industry-standard methods for computing equivalent impedance
matrices in multi-conductor transmission and distribution lines.
"""
# Carson's equation constants for 60 Hz, 100 Ω⋅m earth resistivity
CARSON_REAL_CONSTANT = 0.09530 # Ω/mile
CARSON_IMAG_COEFFICIENT = 0.12134 # Ω/mile
CARSON_IMAG_CONSTANT = 7.93402 # dimensionless
def __init__(self):
"""Initialize the calculator with default conductor labels"""
self.conductor_labels = ['a', 'b', 'c', 'n', 'pe']
self.phase_labels = ['a', 'b', 'c']
def calculate_distance_from_coordinates(self, coord1: Coordinate, coord2: Coordinate) -> float:
"""
Calculate Euclidean distance between two conductor coordinates.
Args:
coord1: First conductor coordinate
coord2: Second conductor coordinate
Returns:
Distance in feet
"""
dx = coord1.x - coord2.x
dy = coord1.y - coord2.y
return np.sqrt(dx**2 + dy**2)
def calculate_all_distances_from_coordinates(self, coordinates: Dict[str, Coordinate]) -> Dict[str, float]:
"""
Calculate all pairwise distances from conductor coordinates.
Args:
coordinates: Dictionary mapping conductor labels to coordinates
Returns:
Dictionary of pairwise distances with keys like 'ab', 'ac', etc.
"""
distances = {}
conductors = self.conductor_labels
# Generate all unique pairs
for i, cond1 in enumerate(conductors):
for j, cond2 in enumerate(conductors[i+1:], i+1):
key = f"{cond1}{cond2}"
distance = self.calculate_distance_from_coordinates(
coordinates[cond1], coordinates[cond2]
)
distances[key] = distance
return distances
def calculate_primitive_impedance_matrix(self,
distances: Dict[str, float],
conductor_params: Dict[str, ConductorParams]) -> np.ndarray:
"""
Calculate the 5×5 primitive impedance matrix using modified Carson's equations.
The primitive matrix includes all conductors (phases, neutral, PE) before reduction.
Self-impedances account for conductor resistance and earth return effects.
Mutual impedances account for electromagnetic coupling and earth return effects.
Args:
distances: Dictionary of pairwise distances between conductors
conductor_params: Dictionary of conductor electrical parameters
Returns:
5×5 complex impedance matrix [Ω/mile]
"""
n_conductors = len(self.conductor_labels)
matrix = np.zeros((n_conductors, n_conductors), dtype=complex)
# Calculate self-impedances (diagonal elements)
for i, conductor in enumerate(self.conductor_labels):
params = conductor_params[conductor]
# Modified Carson's equation for self-impedance
real_part = params.resistance + self.CARSON_REAL_CONSTANT
imag_part = self.CARSON_IMAG_COEFFICIENT * (
np.log(1.0 / params.gmr) + self.CARSON_IMAG_CONSTANT
)
matrix[i, i] = complex(real_part, imag_part)
# Calculate mutual impedances (off-diagonal elements)
# Mapping from matrix indices to distance dictionary keys
distance_map = {
(0, 1): 'ab', (0, 2): 'ac', (0, 3): 'an', (0, 4): 'ape',
(1, 2): 'bc', (1, 3): 'bn', (1, 4): 'bpe',
(2, 3): 'cn', (2, 4): 'cpe',
(3, 4): 'npe'
}
for (i, j), distance_key in distance_map.items():
distance = distances[distance_key]
# Modified Carson's equation for mutual impedance
real_part = self.CARSON_REAL_CONSTANT
imag_part = self.CARSON_IMAG_COEFFICIENT * (
np.log(1.0 / distance) + self.CARSON_IMAG_CONSTANT
)
mutual_impedance = complex(real_part, imag_part)
matrix[i, j] = mutual_impedance
matrix[j, i] = mutual_impedance # Symmetry
return matrix
def apply_kron_reduction(self, primitive_matrix: np.ndarray) -> np.ndarray:
"""
Apply Kron reduction to eliminate neutral and PE conductors from the impedance matrix.
Kron reduction preserves the electrical behavior of the phase conductors while
eliminating the neutral and protective earth conductors from the analysis.
The reduction formula is: Z_abc = Z_pp - Z_pq @ Z_qq^(-1) @ Z_qp
Args:
primitive_matrix: 5×5 primitive impedance matrix
Returns:
3×3 reduced impedance matrix for phase conductors only [Ω/mile]
"""
# Extract sub-matrices for Kron reduction
# Z_pp: phase-to-phase impedances (3×3) - indices 0,1,2 (a,b,c)
# Z_qq: neutral/PE impedances (2×2) - indices 3,4 (n,pe)
# Z_pq: phase-to-neutral/PE coupling (3×2)
# Z_qp: neutral/PE-to-phase coupling (2×3) - transpose of Z_pq
Z_pp = primitive_matrix[0:3, 0:3] # Phase conductors
Z_qq = primitive_matrix[3:5, 3:5] # Neutral and PE
Z_pq = primitive_matrix[0:3, 3:5] # Phase to neutral/PE coupling
Z_qp = primitive_matrix[3:5, 0:3] # Neutral/PE to phase coupling
# Calculate Z_qq inverse using robust numerical methods
try:
Z_qq_inv = np.linalg.inv(Z_qq)
except np.linalg.LinAlgError:
# Fallback to pseudo-inverse if matrix is singular
Z_qq_inv = np.linalg.pinv(Z_qq)
print("Warning: Z_qq matrix is singular, using pseudo-inverse")
# Apply Kron reduction formula
# Z_abc = Z_pp - Z_pq @ Z_qq^(-1) @ Z_qp
correction_term = Z_pq @ Z_qq_inv @ Z_qp
reduced_matrix = Z_pp - correction_term
return reduced_matrix
def calculate_impedance_from_distances(self,
distances: Dict[str, float],
conductor_params: Dict[str, ConductorParams]) -> Tuple[np.ndarray, np.ndarray]:
"""
Complete impedance calculation from conductor distances.
Args:
distances: Dictionary of pairwise conductor distances
conductor_params: Dictionary of conductor electrical parameters
Returns:
Tuple of (primitive_matrix, reduced_matrix)
"""
primitive_matrix = self.calculate_primitive_impedance_matrix(distances, conductor_params)
reduced_matrix = self.apply_kron_reduction(primitive_matrix)
return primitive_matrix, reduced_matrix
def calculate_impedance_from_coordinates(self,
coordinates: Dict[str, Coordinate],
conductor_params: Dict[str, ConductorParams]) -> Tuple[np.ndarray, np.ndarray, Dict[str, float]]:
"""
Complete impedance calculation from conductor coordinates.
Args:
coordinates: Dictionary mapping conductor labels to coordinates
conductor_params: Dictionary of conductor electrical parameters
Returns:
Tuple of (primitive_matrix, reduced_matrix, calculated_distances)
"""
distances = self.calculate_all_distances_from_coordinates(coordinates)
primitive_matrix, reduced_matrix = self.calculate_impedance_from_distances(distances, conductor_params)
return primitive_matrix, reduced_matrix, distances
def format_complex_matrix(self, matrix: np.ndarray, precision: int = 6) -> List[List[str]]:
"""
Format complex matrix for readable display.
Args:
matrix: Complex numpy array
precision: Number of decimal places
Returns:
List of lists containing formatted complex number strings
"""
formatted = []
for row in matrix:
formatted_row = []
for element in row:
real = f"{element.real:.{precision}f}"
imag = f"{element.imag:.{precision}f}"
sign = "+" if element.imag >= 0 else ""
formatted_row.append(f"{real} {sign} j{imag}")
formatted.append(formatted_row)
return formatted
def create_impedance_dataframe(self, matrix: np.ndarray, labels: List[str]) -> pd.DataFrame:
"""
Create a pandas DataFrame from impedance matrix for easier analysis.
Args:
matrix: Complex impedance matrix
labels: Row/column labels
Returns:
DataFrame with complex impedance values
"""
return pd.DataFrame(matrix, index=labels, columns=labels)
def analyze_matrix_properties(self, matrix: np.ndarray) -> Dict[str, Union[float, bool]]:
"""
Analyze impedance matrix properties for engineering insights.
Args:
matrix: Complex impedance matrix
Returns:
Dictionary containing matrix analysis results
"""
properties = {}
# Basic properties
properties['condition_number'] = np.linalg.cond(matrix)
properties['determinant'] = np.linalg.det(matrix)
properties['is_symmetric'] = np.allclose(matrix, matrix.T, rtol=1e-10)
properties['is_positive_definite'] = np.all(np.linalg.eigvals(matrix.real) > 0)
# Eigenvalue analysis
eigenvalues = np.linalg.eigvals(matrix)
properties['min_eigenvalue_real'] = np.min(eigenvalues.real)
properties['max_eigenvalue_real'] = np.max(eigenvalues.real)
properties['eigenvalue_spread'] = properties['max_eigenvalue_real'] / properties['min_eigenvalue_real']
# Impedance magnitude analysis
magnitudes = np.abs(matrix)
properties['min_impedance_magnitude'] = np.min(magnitudes)
properties['max_impedance_magnitude'] = np.max(magnitudes)
properties['avg_self_impedance_magnitude'] = np.mean(np.abs(np.diag(matrix)))
return properties
def format_results_for_display(self, primitive_matrix: np.ndarray,
reduced_matrix: np.ndarray,
distances: Dict[str, float]) -> str:
"""
Format calculation results for display in Gradio interface.
Args:
primitive_matrix: 5×5 primitive impedance matrix
reduced_matrix: 3×3 reduced impedance matrix
distances: Dictionary of conductor distances
Returns:
Formatted string with results
"""
result = "=== 3-Phase Impedance Calculation Results ===\n\n"
# Display distances
result += "Conductor Distances:\n"
for pair, distance in distances.items():
conductor1, conductor2 = pair[0].upper(), pair[1].upper()
result += f" {conductor1}-{conductor2}: {distance:.3f} ft\n"
result += "\nPrimitive Impedance Matrix (5×5) [Ω/mile]:\n"
result += " "
for label in self.conductor_labels:
result += f"{label.upper():>15s}"
result += "\n"
for i, label in enumerate(self.conductor_labels):
result += f"{label.upper():>3s}: "
for j in range(5):
z = primitive_matrix[i, j]
result += f"{z.real:>7.3f}{z.imag:>+7.3f}j "
result += "\n"
result += "\nReduced Phase Impedance Matrix (3×3) [Ω/mile]:\n"
result += " "
for label in self.phase_labels:
result += f"{label.upper():>15s}"
result += "\n"
for i, label in enumerate(self.phase_labels):
result += f"{label.upper():>3s}: "
for j in range(3):
z = reduced_matrix[i, j]
result += f"{z.real:>7.3f}{z.imag:>+7.3f}j "
result += "\n"
# Add matrix analysis
properties = self.analyze_matrix_properties(reduced_matrix)
result += f"\nMatrix Analysis:\n"
result += f" Condition Number: {properties['condition_number']:.2e}\n"
result += f" Is Symmetric: {properties['is_symmetric']}\n"
result += f" Average Self-Impedance Magnitude: {properties['avg_self_impedance_magnitude']:.5f} Ω/mile\n"
return result
def create_test_data():
"""Create sample data for testing the calculator"""
# Sample conductor parameters (typical values)
conductor_params = {
'a': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'b': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'c': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'n': ConductorParams(resistance=8.0, gmr=0.012), # #6 ACSR
'pe': ConductorParams(resistance=8.0, gmr=0.012) # #6 ACSR
}
# Sample coordinates (typical distribution line configuration)
coordinates = {
'a': Coordinate(x=0, y=42),
'b': Coordinate(x=23.5, y=42),
'c': Coordinate(x=47, y=42),
'n': Coordinate(x=10, y=74),
'pe': Coordinate(x=37, y=72)
}
return conductor_params, coordinates |