Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
|
5 |
+
|
6 |
+
|
7 |
+
def tokenize_dialogue(dialogue_data):
|
8 |
+
"""
|
9 |
+
Tokenize the dialogue using the GPT-OSS tokenizer
|
10 |
+
"""
|
11 |
+
if tokenizer is None:
|
12 |
+
raise ValueError("Tokenizer not loaded. Please check your installation.")
|
13 |
+
|
14 |
+
messages = []
|
15 |
+
for message in dialogue_data:
|
16 |
+
role = message.get("speaker", "user")
|
17 |
+
content = message.get("text", "")
|
18 |
+
|
19 |
+
if role == "system":
|
20 |
+
messages.append({"role": "system", "content": content})
|
21 |
+
elif role == "user":
|
22 |
+
messages.append({"role": "user", "content": content})
|
23 |
+
elif role == "assistant":
|
24 |
+
messages.append({"role": "assistant", "content": content})
|
25 |
+
|
26 |
+
formatted_input = tokenizer.apply_chat_template(
|
27 |
+
messages,
|
28 |
+
add_generation_prompt=True,
|
29 |
+
return_tensors="np"
|
30 |
+
)
|
31 |
+
|
32 |
+
token_ids = formatted_input[0].tolist()
|
33 |
+
decoded_text = []
|
34 |
+
colors = ["#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4", "#FFEAA7"]
|
35 |
+
color_map = {}
|
36 |
+
|
37 |
+
for i, token_id in enumerate(token_ids):
|
38 |
+
color = colors[i % len(colors)]
|
39 |
+
if token_id not in color_map:
|
40 |
+
color_map[str(token_id)] = color
|
41 |
+
decoded_text.append((tokenizer.decode([token_id]), str(token_id)))
|
42 |
+
|
43 |
+
print("decoded_text", decoded_text)
|
44 |
+
|
45 |
+
return gr.HighlightedText(value=decoded_text, color_map=color_map), len(token_ids)
|
46 |
+
|
47 |
+
def create_sample_dialogue():
|
48 |
+
"""
|
49 |
+
Create a sample dialogue for demonstration
|
50 |
+
"""
|
51 |
+
return [
|
52 |
+
{"speaker": "system", "text": "You are a helpful assistant."},
|
53 |
+
{"speaker": "user", "text": "Hello! How are you today?"},
|
54 |
+
{"speaker": "assistant", "text": "I'm doing well, thank you for asking! How can I help you today?"},
|
55 |
+
{"speaker": "user", "text": "Can you explain what MXFP4 quantization is?"}
|
56 |
+
]
|
57 |
+
|
58 |
+
with gr.Blocks(title="GPT-OSS Tokenizer Explorer") as demo:
|
59 |
+
gr.Markdown("# GPT-OSS Tokenizer Explorer")
|
60 |
+
gr.Markdown("Enter a dialogue and see how the GPT-OSS tokenizer processes it. Use the format `speaker: message` in the dialogue component.")
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column(scale=1):
|
64 |
+
gr.Markdown("### Input Dialogue")
|
65 |
+
|
66 |
+
dialogue_input = gr.Dialogue(
|
67 |
+
speakers=["system", "user", "assistant"],
|
68 |
+
label="Enter your dialogue",
|
69 |
+
placeholder="Type 'system:', 'user:', or 'assistant:' followed by your message",
|
70 |
+
show_submit_button=True,
|
71 |
+
show_copy_button=True,
|
72 |
+
type="dialogue",
|
73 |
+
ui_mode="dialogue-only",
|
74 |
+
)
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
sample_btn = gr.Button("Load Sample", variant="secondary")
|
78 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
79 |
+
|
80 |
+
with gr.Column(scale=1):
|
81 |
+
gr.Markdown("### Tokenization Results")
|
82 |
+
|
83 |
+
highlighted_output = gr.HighlightedText(
|
84 |
+
label="Tokenized Output",
|
85 |
+
show_inline_category=False
|
86 |
+
)
|
87 |
+
|
88 |
+
token_count = gr.Label(
|
89 |
+
value="Total Tokens: 0",
|
90 |
+
label="Token Count"
|
91 |
+
)
|
92 |
+
|
93 |
+
with gr.Accordion("How to use", open=False):
|
94 |
+
gr.Markdown("""
|
95 |
+
### Instructions:
|
96 |
+
1. **Enter dialogue**: Use the dialogue component to enter conversations
|
97 |
+
2. **Speaker format**: Type `system:`, `user:`, or `assistant:` followed by your message
|
98 |
+
3. **Submit**: Click 'Tokenize Dialogue' to process the conversation
|
99 |
+
4. **View results**: See the tokenization details in the output area
|
100 |
+
|
101 |
+
### Example:
|
102 |
+
```
|
103 |
+
system: You are a helpful assistant.
|
104 |
+
user: Hello! How are you today?
|
105 |
+
assistant: I'm doing well, thank you for asking!
|
106 |
+
```
|
107 |
+
|
108 |
+
### What you'll see:
|
109 |
+
- **Total tokens**: Number of tokens in the conversation
|
110 |
+
- **Tokenized output**: How the tokenizer formats the conversation
|
111 |
+
""")
|
112 |
+
|
113 |
+
def process_dialogue(dialogue):
|
114 |
+
if not dialogue:
|
115 |
+
return "Please enter some dialogue first.", {}, "Total Tokens: 0"
|
116 |
+
|
117 |
+
result_text, token_count_val = tokenize_dialogue(dialogue)
|
118 |
+
|
119 |
+
return result_text, f"Total Tokens: {token_count_val}"
|
120 |
+
|
121 |
+
def clear_dialogue():
|
122 |
+
return None, [], "Total Tokens: 0"
|
123 |
+
|
124 |
+
sample_btn.click(
|
125 |
+
fn=create_sample_dialogue,
|
126 |
+
outputs=[dialogue_input]
|
127 |
+
)
|
128 |
+
|
129 |
+
clear_btn.click(
|
130 |
+
fn=clear_dialogue,
|
131 |
+
outputs=[dialogue_input, highlighted_output, token_count]
|
132 |
+
)
|
133 |
+
|
134 |
+
dialogue_input.submit(
|
135 |
+
fn=process_dialogue,
|
136 |
+
inputs=[dialogue_input],
|
137 |
+
outputs=[highlighted_output, token_count]
|
138 |
+
)
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
demo.launch()
|