Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,111 Bytes
cc5b602 6f619d7 ae90620 6386510 677d853 51a7d9e 652620b 6386510 51a7d9e a1a5283 e6367a7 3bce535 51a7d9e 6386510 bd34f0b 0486bff bd34f0b 51a7d9e bd34f0b 51a7d9e da59244 bacf4cd 3bce535 652620b 0486bff 3288692 bacf4cd 6f28fd6 3bce535 bacf4cd 0486bff 4ed884e bacf4cd 3d7390f bacf4cd 68759b3 4ed884e bacf4cd 3bce535 bacf4cd 652620b bacf4cd 652620b bacf4cd 652620b bacf4cd 652620b bacf4cd 3bce535 c02dde9 6f28fd6 652620b 3bce535 652620b bacf4cd 3bce535 bacf4cd 3bce535 bacf4cd 3bce535 bacf4cd 652620b bacf4cd f80f6ce 6386510 51a7d9e 82b38de 51a7d9e bacf4cd 51a7d9e bacf4cd 51a7d9e 533a2d3 bacf4cd 533a2d3 51a7d9e a1a5283 51a7d9e 4ed884e 51a7d9e a1a5283 652620b 51a7d9e bd34f0b 4ed884e bd34f0b 13a11cb bd34f0b 68759b3 bd34f0b 5cc07e4 bd34f0b 51a7d9e 652620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "AGI-0/Art-v0-3B"
TITLE = """<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>"""
PLACEHOLDER = """
<center>
<p>Hi! How can I help you today?</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
class ConversationManager:
def __init__(self):
self.user_history = [] # For displaying to user (with markdown)
self.model_history = [] # For feeding back to model (with original tags)
def add_exchange(self, user_message, assistant_response, formatted_response):
self.model_history.append((user_message, assistant_response))
self.user_history.append((user_message, formatted_response))
def get_model_history(self):
return self.model_history
def get_user_history(self):
return self.user_history
conversation_manager = ConversationManager()
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto"
)
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
def format_response(response):
"""Format the response for user display"""
if "<|end_reasoning|>" in response:
parts = response.split("<|end_reasoning|>")
reasoning = parts[0]
rest = parts[1] if len(parts) > 1 else ""
return f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
return response
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.2,
max_new_tokens: int = 4096,
top_p: float = 1.0,
top_k: int = 1,
penalty: float = 1.1,
):
model_history = conversation_manager.get_model_history()
conversation = []
for prompt, answer in model_history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[end_of_sentence],
streamer=streamer,
)
buffer = ""
original_response = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
for new_text in streamer:
buffer += new_text
original_response += new_text
formatted_buffer = format_response(buffer)
if thread.is_alive() is False:
conversation_manager.add_exchange(
message,
original_response, # Original for model
formatted_buffer # Formatted for user
)
yield formatted_buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters",
open=False,
render=False
),
additional_inputs=[
gr.Textbox(
value="",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.2,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=4096,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=50,
step=1,
value=1,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.1,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |