File size: 6,111 Bytes
cc5b602
6f619d7
ae90620
6386510
677d853
51a7d9e
652620b
6386510
51a7d9e
a1a5283
e6367a7
3bce535
51a7d9e
6386510
bd34f0b
0486bff
bd34f0b
 
51a7d9e
 
 
bd34f0b
 
 
 
 
 
 
51a7d9e
 
da59244
bacf4cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bce535
652620b
 
0486bff
 
3288692
bacf4cd
 
6f28fd6
3bce535
bacf4cd
 
 
 
 
 
 
 
 
0486bff
4ed884e
bacf4cd
3d7390f
 
bacf4cd
 
 
 
68759b3
4ed884e
bacf4cd
 
3bce535
bacf4cd
652620b
bacf4cd
652620b
 
bacf4cd
652620b
 
bacf4cd
 
 
 
 
 
 
 
 
 
 
 
652620b
 
bacf4cd
3bce535
 
 
 
 
c02dde9
6f28fd6
652620b
 
3bce535
652620b
bacf4cd
3bce535
bacf4cd
 
 
3bce535
bacf4cd
 
 
3bce535
bacf4cd
652620b
bacf4cd
 
 
 
 
 
 
 
f80f6ce
6386510
51a7d9e
82b38de
51a7d9e
bacf4cd
 
 
 
51a7d9e
 
 
 
bacf4cd
 
 
 
 
51a7d9e
533a2d3
 
bacf4cd
533a2d3
 
51a7d9e
 
 
 
a1a5283
51a7d9e
 
 
 
 
4ed884e
51a7d9e
a1a5283
652620b
51a7d9e
 
bd34f0b
 
 
 
4ed884e
bd34f0b
 
 
 
 
13a11cb
bd34f0b
68759b3
bd34f0b
 
 
 
 
 
 
5cc07e4
bd34f0b
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
652620b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "AGI-0/Art-v0-3B"

TITLE = """<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>"""

PLACEHOLDER = """
<center>
<p>Hi! How can I help you today?</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

class ConversationManager:
    def __init__(self):
        self.user_history = []  # For displaying to user (with markdown)
        self.model_history = []  # For feeding back to model (with original tags)
    
    def add_exchange(self, user_message, assistant_response, formatted_response):
        self.model_history.append((user_message, assistant_response))
        self.user_history.append((user_message, formatted_response))
    
    def get_model_history(self):
        return self.model_history
    
    def get_user_history(self):
        return self.user_history

conversation_manager = ConversationManager()

device = "cuda"  # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")

def format_response(response):
    """Format the response for user display"""
    if "<|end_reasoning|>" in response:
        parts = response.split("<|end_reasoning|>")
        reasoning = parts[0]
        rest = parts[1] if len(parts) > 1 else ""
        return f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
    return response

@spaces.GPU()
def stream_chat(
    message: str,
    history: list,
    system_prompt: str,
    temperature: float = 0.2,
    max_new_tokens: int = 4096,
    top_p: float = 1.0,
    top_k: int = 1,
    penalty: float = 1.1,
):
    model_history = conversation_manager.get_model_history()
    
    conversation = []
    for prompt, answer in model_history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    
    conversation.append({"role": "user", "content": message})
    
    input_ids = tokenizer.apply_chat_template(
        conversation, 
        add_generation_prompt=True, 
        return_tensors="pt"
    ).to(model.device)
    
    streamer = TextIteratorStreamer(
        tokenizer, 
        timeout=60.0, 
        skip_prompt=True, 
        skip_special_tokens=True
    )
    
    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        eos_token_id=[end_of_sentence],
        streamer=streamer,
    )
    
    buffer = ""
    original_response = ""
    
    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
        for new_text in streamer:
            buffer += new_text
            original_response += new_text
            
            formatted_buffer = format_response(buffer)
            
            if thread.is_alive() is False:
                conversation_manager.add_exchange(
                    message,
                    original_response,  # Original for model
                    formatted_buffer    # Formatted for user
                )
            
            yield formatted_buffer

chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(
        value="Duplicate Space for private use", 
        elem_classes="duplicate-button"
    )
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(
            label="⚙️ Parameters",
            open=False,
            render=False
        ),
        additional_inputs=[
            gr.Textbox(
                value="",
                label="System Prompt",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.2,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=4096,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=50,
                step=1,
                value=1,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.1,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()