Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,600 Bytes
cc5b602 6f619d7 ae90620 6386510 befe84a 1898bf7 befe84a 6386510 51a7d9e a1a5283 e6367a7 befe84a 2fb89d3 befe84a f663ac7 befe84a 1898bf7 befe84a 2fb89d3 befe84a 2fb89d3 f663ac7 befe84a 0486bff 4ed884e 2fb89d3 d95f796 2fb89d3 68759b3 4ed884e befe84a f663ac7 befe84a 3bce535 befe84a f663ac7 652620b befe84a f663ac7 2fb89d3 befe84a f663ac7 2fb89d3 f663ac7 2fb89d3 befe84a f663ac7 2fb89d3 f663ac7 652620b 2fb89d3 3bce535 c02dde9 6f28fd6 652620b f663ac7 2fb89d3 befe84a f663ac7 bacf4cd f663ac7 2fb89d3 befe84a f663ac7 befe84a f663ac7 befe84a f663ac7 befe84a 1898bf7 befe84a f80f6ce f663ac7 befe84a f663ac7 befe84a f663ac7 d95f796 51a7d9e befe84a 51a7d9e befe84a 51a7d9e 559ab3f 51a7d9e 559ab3f 82baec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "AGI-0/Art-v0-3B"
TITLE = """<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>"""
PLACEHOLDER = """
<center>
<p>Hi! How can I help you today?</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
class ConversationManager:
def __init__(self):
self.user_history = [] # For displaying to user (with markdown)
self.model_history = [] # For feeding back to model (with original tags)
def add_exchange(self, user_message, assistant_response, formatted_response):
self.model_history.append((user_message, assistant_response))
self.user_history.append((user_message, formatted_response))
print(f"\nModel History Exchange:")
print(f"User: {user_message}")
print(f"Assistant (Original): {assistant_response}")
print(f"Assistant (Formatted): {formatted_response}")
def get_model_history(self):
return self.model_history
def get_user_history(self):
return self.user_history
conversation_manager = ConversationManager()
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto"
)
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
def format_response(response):
"""Format the response for user display"""
if "<|end_reasoning|>" in response:
parts = response.split("<|end_reasoning|>")
reasoning = parts[0]
rest = parts[1] if len(parts) > 1 else ""
return f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
return response
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.2,
max_new_tokens: int = 4096,
top_p: float = 1.0,
top_k: int = 1,
penalty: float = 1.1,
):
print(f'\nNew Chat Request:')
print(f'Message: {message}')
print(f'History from UI: {history}')
print(f'System Prompt: {system_prompt}')
print(f'Parameters: temp={temperature}, max_tokens={max_new_tokens}, top_p={top_p}, top_k={top_k}, penalty={penalty}')
# Build conversation from UI history instead of model_history
conversation = []
for prompt, answer in (history or []):
# Extract original response if it's in the details format
if "<details>" in answer:
# Extract content between <details> tags and after </details>
parts = answer.split("</details>")
if len(parts) > 1:
# Get the content after the </details> tag
answer_content = parts[1].strip()
# Get the reasoning part
reasoning = answer.split("<summary>")[1].split("</summary>")[1].strip()
# Reconstruct the original format
answer = f"{reasoning}<|end_reasoning|>{answer_content}"
else:
# If no </details> tag found, use the answer as is
answer = answer
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
print(f'\nFormatted Conversation for Model:')
print(conversation)
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[end_of_sentence],
streamer=streamer,
)
buffer = ""
original_response = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
for new_text in streamer:
buffer += new_text
original_response += new_text
formatted_buffer = format_response(buffer)
if thread.is_alive() is False:
print(f'\nGeneration Complete:')
print(f'Original Response: {original_response}')
print(f'Formatted Response: {formatted_buffer}')
conversation_manager.add_exchange(
message,
original_response, # Original for model
formatted_buffer # Formatted for user
)
yield formatted_buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters",
open=False,
render=False
),
additional_inputs=[
gr.Textbox(
value="",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.2,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=4096,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=50,
step=1,
value=1,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.1,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |