File size: 7,600 Bytes
cc5b602
6f619d7
ae90620
6386510
befe84a
1898bf7
befe84a
6386510
51a7d9e
a1a5283
e6367a7
befe84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb89d3
 
befe84a
 
f663ac7
befe84a
 
 
 
 
 
 
1898bf7
befe84a
 
 
 
 
2fb89d3
 
befe84a
 
2fb89d3
f663ac7
 
 
 
 
 
 
 
befe84a
 
 
 
 
 
 
 
 
0486bff
4ed884e
2fb89d3
d95f796
2fb89d3
 
 
 
 
68759b3
4ed884e
befe84a
 
 
 
 
f663ac7
befe84a
3bce535
befe84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f663ac7
652620b
befe84a
 
f663ac7
2fb89d3
befe84a
 
f663ac7
2fb89d3
f663ac7
2fb89d3
befe84a
 
 
f663ac7
2fb89d3
f663ac7
652620b
2fb89d3
3bce535
 
 
 
 
c02dde9
6f28fd6
652620b
 
f663ac7
2fb89d3
befe84a
f663ac7
bacf4cd
 
 
f663ac7
2fb89d3
 
befe84a
f663ac7
befe84a
f663ac7
befe84a
 
 
 
 
 
 
 
 
 
f663ac7
befe84a
1898bf7
befe84a
f80f6ce
f663ac7
befe84a
f663ac7
befe84a
f663ac7
 
d95f796
51a7d9e
 
 
befe84a
 
 
 
 
51a7d9e
befe84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
 
 
559ab3f
51a7d9e
 
 
 
 
 
559ab3f
82baec6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "AGI-0/Art-v0-3B"

TITLE = """<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>"""

PLACEHOLDER = """
<center>
<p>Hi! How can I help you today?</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

class ConversationManager:
    def __init__(self):
        self.user_history = []  # For displaying to user (with markdown)
        self.model_history = []  # For feeding back to model (with original tags)
    
    def add_exchange(self, user_message, assistant_response, formatted_response):
        self.model_history.append((user_message, assistant_response))
        self.user_history.append((user_message, formatted_response))
        print(f"\nModel History Exchange:")
        print(f"User: {user_message}")
        print(f"Assistant (Original): {assistant_response}")
        print(f"Assistant (Formatted): {formatted_response}")
    
    def get_model_history(self):
        return self.model_history
    
    def get_user_history(self):
        return self.user_history

conversation_manager = ConversationManager()

device = "cuda"  # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")

def format_response(response):
    """Format the response for user display"""
    if "<|end_reasoning|>" in response:
        parts = response.split("<|end_reasoning|>")
        reasoning = parts[0]
        rest = parts[1] if len(parts) > 1 else ""
        return f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
    return response

@spaces.GPU()
def stream_chat(
    message: str,
    history: list,
    system_prompt: str,
    temperature: float = 0.2,
    max_new_tokens: int = 4096,
    top_p: float = 1.0,
    top_k: int = 1,
    penalty: float = 1.1,
):
    print(f'\nNew Chat Request:')
    print(f'Message: {message}')
    print(f'History from UI: {history}')
    print(f'System Prompt: {system_prompt}')
    print(f'Parameters: temp={temperature}, max_tokens={max_new_tokens}, top_p={top_p}, top_k={top_k}, penalty={penalty}')
    
    # Build conversation from UI history instead of model_history
    conversation = []
    for prompt, answer in (history or []):
        # Extract original response if it's in the details format
        if "<details>" in answer:
            # Extract content between <details> tags and after </details>
            parts = answer.split("</details>")
            if len(parts) > 1:
                # Get the content after the </details> tag
                answer_content = parts[1].strip()
                # Get the reasoning part
                reasoning = answer.split("<summary>")[1].split("</summary>")[1].strip()
                # Reconstruct the original format
                answer = f"{reasoning}<|end_reasoning|>{answer_content}"
            else:
                # If no </details> tag found, use the answer as is
                answer = answer
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    
    conversation.append({"role": "user", "content": message})
    print(f'\nFormatted Conversation for Model:')
    print(conversation)
    
    input_ids = tokenizer.apply_chat_template(
        conversation, 
        add_generation_prompt=True, 
        return_tensors="pt"
    ).to(model.device)
    
    streamer = TextIteratorStreamer(
        tokenizer, 
        timeout=60.0, 
        skip_prompt=True, 
        skip_special_tokens=True
    )
    
    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        eos_token_id=[end_of_sentence],
        streamer=streamer,
    )
    
    buffer = ""
    original_response = ""
    
    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
        for new_text in streamer:
            buffer += new_text
            original_response += new_text
            
            formatted_buffer = format_response(buffer)
            
            if thread.is_alive() is False:
                print(f'\nGeneration Complete:')
                print(f'Original Response: {original_response}')
                print(f'Formatted Response: {formatted_buffer}')
                
                conversation_manager.add_exchange(
                    message,
                    original_response,  # Original for model
                    formatted_buffer    # Formatted for user
                )
            
            yield formatted_buffer

chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(
        value="Duplicate Space for private use", 
        elem_classes="duplicate-button"
    )
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(
            label="⚙️ Parameters",
            open=False,
            render=False
        ),
        additional_inputs=[
            gr.Textbox(
                value="",
                label="System Prompt",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.2,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=4096,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=50,
                step=1,
                value=1,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.1,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()