frncscp commited on
Commit
aa7e500
·
1 Parent(s): d6bbef3

Update pages/Entorno de Ejecución.py

Browse files
Files changed (1) hide show
  1. pages/Entorno de Ejecución.py +6 -5
pages/Entorno de Ejecución.py CHANGED
@@ -45,7 +45,7 @@ with col_a:
45
  ultra_flag = False
46
  if ultra_button:
47
  ultra_flag = True
48
- ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
49
 
50
  # Create a dropdown menu to select the model
51
  model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys())
@@ -69,7 +69,7 @@ with col_a:
69
 
70
  #for model in model_choice:
71
  #selected_models.append(model)
72
- selected_models = [load_model(model_dict[model]) for model in model_choice]
73
 
74
  # Set the image dimensions
75
  IMAGE_WIDTH = IMAGE_HEIGHT = 224
@@ -80,7 +80,7 @@ with col_b:
80
  if st.button('¿Hay un patacón en la imagen?'):
81
  if len(selected_models) > 0 and ultra_flag:
82
  st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.')
83
- elif uploaded_file is not None and len(selected_models) > 0 or ultra_flag:
84
  # Load the image and resize it to the required dimensions
85
  #img = tf.io.read_file(uploaded_file)
86
  raw_img = tf.image.decode_image(uploaded_file.read(), channels=3)
@@ -92,14 +92,15 @@ with col_b:
92
  #img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
93
 
94
  # Convert the image to RGB and preprocess it for the model
95
- #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
96
-
97
  # Pass the image to the model and get the prediction
98
  if ultra_flag:
99
  with st.spinner('Cargando ultra-predicción...'):
 
100
  y_gorrito = predict(ultraptctrn, img)
101
  else:
102
  with st.spinner('Cargando predicción...'):
 
103
  y_gorrito = predict(selected_models, img)
104
 
105
  if y_gorrito > threshold:
 
45
  ultra_flag = False
46
  if ultra_button:
47
  ultra_flag = True
48
+
49
 
50
  # Create a dropdown menu to select the model
51
  model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys())
 
69
 
70
  #for model in model_choice:
71
  #selected_models.append(model)
72
+
73
 
74
  # Set the image dimensions
75
  IMAGE_WIDTH = IMAGE_HEIGHT = 224
 
80
  if st.button('¿Hay un patacón en la imagen?'):
81
  if len(selected_models) > 0 and ultra_flag:
82
  st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.')
83
+ elif uploaded_file is not None:
84
  # Load the image and resize it to the required dimensions
85
  #img = tf.io.read_file(uploaded_file)
86
  raw_img = tf.image.decode_image(uploaded_file.read(), channels=3)
 
92
  #img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
93
 
94
  # Convert the image to RGB and preprocess it for the model
95
+ #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 
96
  # Pass the image to the model and get the prediction
97
  if ultra_flag:
98
  with st.spinner('Cargando ultra-predicción...'):
99
+ ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
100
  y_gorrito = predict(ultraptctrn, img)
101
  else:
102
  with st.spinner('Cargando predicción...'):
103
+ selected_models = [load_model(model_dict[model]) for model in model_choice]
104
  y_gorrito = predict(selected_models, img)
105
 
106
  if y_gorrito > threshold: