Spaces:
Running
on
Zero
Running
on
Zero
着手业务逻辑
Browse files
app.py
CHANGED
@@ -1,11 +1,124 @@
|
|
|
|
1 |
import spaces
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from glob import glob
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
@spaces.GPU(duration=60)
|
7 |
-
def gen_shape(
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def get_example_img_list():
|
11 |
print('Loading example img list ...')
|
@@ -33,14 +146,16 @@ with gr.Blocks().queue() as demo:
|
|
33 |
image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
|
34 |
gen_button = gr.Button(value='Generate Shape', variant='primary')
|
35 |
with gr.Accordion("Advanced Options", open=False):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
with gr.Column():
|
45 |
num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
|
46 |
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
|
@@ -57,6 +172,11 @@ with gr.Blocks().queue() as demo:
|
|
57 |
gr.Markdown("#### Image Examples")
|
58 |
gr.Examples(examples=example_imgs, inputs=[image],
|
59 |
label=None, examples_per_page=18)
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import spaces
|
3 |
+
import random
|
4 |
+
import shutil
|
5 |
import gradio as gr
|
6 |
from glob import glob
|
7 |
+
from pathlib import Path
|
8 |
+
import uuid
|
9 |
+
import argparse
|
10 |
+
import torch
|
11 |
|
12 |
|
13 |
+
parser = argparse.ArgumentParser()
|
14 |
+
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
|
15 |
+
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
|
16 |
+
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
|
17 |
+
parser.add_argument('--port', type=int, default=7860)
|
18 |
+
parser.add_argument('--host', type=str, default='0.0.0.0')
|
19 |
+
parser.add_argument('--device', type=str, default='cuda')
|
20 |
+
parser.add_argument('--mc_algo', type=str, default='mc')
|
21 |
+
parser.add_argument('--cache_path', type=str, default='gradio_cache')
|
22 |
+
parser.add_argument('--enable_t23d', action='store_true')
|
23 |
+
parser.add_argument('--disable_tex', action='store_true')
|
24 |
+
parser.add_argument('--enable_flashvdm', action='store_true')
|
25 |
+
parser.add_argument('--compile', action='store_true')
|
26 |
+
parser.add_argument('--low_vram_mode', action='store_true')
|
27 |
+
args = parser.parse_args()
|
28 |
+
args.enable_flashvdm = True
|
29 |
+
|
30 |
+
SAVE_DIR = args.cache_path
|
31 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
32 |
+
|
33 |
+
|
34 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
35 |
+
if randomize_seed:
|
36 |
+
seed = random.randint(0, MAX_SEED)
|
37 |
+
return seed
|
38 |
+
|
39 |
+
|
40 |
+
def gen_save_folder(max_size=200):
|
41 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
42 |
+
|
43 |
+
# 获取所有文件夹路径
|
44 |
+
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
|
45 |
+
|
46 |
+
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
|
47 |
+
if len(dirs) >= max_size:
|
48 |
+
# 按创建时间排序,最久的排在前面
|
49 |
+
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
|
50 |
+
shutil.rmtree(oldest_dir)
|
51 |
+
print(f"Removed the oldest folder: {oldest_dir}")
|
52 |
+
|
53 |
+
# 生成一个新的 uuid 文件夹名称
|
54 |
+
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
|
55 |
+
os.makedirs(new_folder, exist_ok=True)
|
56 |
+
print(f"Created new folder: {new_folder}")
|
57 |
+
|
58 |
+
return new_folder
|
59 |
+
|
60 |
+
|
61 |
+
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
|
62 |
+
Hunyuan3DDiTFlowMatchingPipeline
|
63 |
+
from hy3dgen.rembg import BackgroundRemover
|
64 |
+
|
65 |
+
rmbg_worker = BackgroundRemover()
|
66 |
+
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
|
67 |
+
args.model_path,
|
68 |
+
subfolder=args.subfolder,
|
69 |
+
use_safetensors=True,
|
70 |
+
device=args.device,
|
71 |
+
)
|
72 |
+
if args.enable_flashvdm:
|
73 |
+
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
|
74 |
+
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
|
75 |
+
if args.compile:
|
76 |
+
i23d_worker.compile()
|
77 |
+
|
78 |
+
progress=gr.Progress()
|
79 |
+
|
80 |
@spaces.GPU(duration=60)
|
81 |
+
def gen_shape(
|
82 |
+
image=None,
|
83 |
+
steps=50,
|
84 |
+
guidance_scale=7.5,
|
85 |
+
seed=1234,
|
86 |
+
octree_resolution=256,
|
87 |
+
num_chunks=200000,
|
88 |
+
target_face_num=10000,
|
89 |
+
randomize_seed: bool = False,
|
90 |
+
):
|
91 |
+
|
92 |
+
def callback(step_idx, timestep, outputs):
|
93 |
+
progress_value = (step_idx+1.0)/steps
|
94 |
+
progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps")
|
95 |
+
|
96 |
+
|
97 |
+
if image is None:
|
98 |
+
raise gr.Error("Please provide either a caption or an image.")
|
99 |
+
|
100 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
101 |
+
octree_resolution = int(octree_resolution)
|
102 |
+
save_folder = gen_save_folder()
|
103 |
+
|
104 |
+
image = rmbg_worker(image.convert('RGB'))
|
105 |
+
|
106 |
+
generator = torch.Generator()
|
107 |
+
generator = generator.manual_seed(int(seed))
|
108 |
+
outputs = i23d_worker(
|
109 |
+
image=image,
|
110 |
+
num_inference_steps=steps,
|
111 |
+
guidance_scale=guidance_scale,
|
112 |
+
generator=generator,
|
113 |
+
octree_resolution=octree_resolution,
|
114 |
+
num_chunks=num_chunks,
|
115 |
+
output_type='mesh',
|
116 |
+
callback=callback
|
117 |
+
)
|
118 |
+
print(outputs)
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
|
123 |
def get_example_img_list():
|
124 |
print('Loading example img list ...')
|
|
|
146 |
image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
|
147 |
gen_button = gr.Button(value='Generate Shape', variant='primary')
|
148 |
with gr.Accordion("Advanced Options", open=False):
|
149 |
+
with gr.Column():
|
150 |
+
seed = gr.Slider(
|
151 |
+
label="Seed",
|
152 |
+
minimum=0,
|
153 |
+
maximum=MAX_SEED,
|
154 |
+
step=1,
|
155 |
+
value=1234,
|
156 |
+
min_width=100,
|
157 |
+
)
|
158 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
159 |
with gr.Column():
|
160 |
num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
|
161 |
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
|
|
|
172 |
gr.Markdown("#### Image Examples")
|
173 |
gr.Examples(examples=example_imgs, inputs=[image],
|
174 |
label=None, examples_per_page=18)
|
175 |
+
|
176 |
+
gen_button.click(
|
177 |
+
fn=gen_shape,
|
178 |
+
inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed],
|
179 |
+
outputs=[html_export_mesh]
|
180 |
+
)
|
181 |
|
182 |
demo.launch()
|