frogleo commited on
Commit
3c7b849
·
1 Parent(s): 9ca7fc4

着手业务逻辑

Browse files
Files changed (1) hide show
  1. app.py +131 -11
app.py CHANGED
@@ -1,11 +1,124 @@
 
1
  import spaces
 
 
2
  import gradio as gr
3
  from glob import glob
 
 
 
 
4
 
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  @spaces.GPU(duration=60)
7
- def gen_shape():
8
- print("do nothing")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def get_example_img_list():
11
  print('Loading example img list ...')
@@ -33,14 +146,16 @@ with gr.Blocks().queue() as demo:
33
  image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
34
  gen_button = gr.Button(value='Generate Shape', variant='primary')
35
  with gr.Accordion("Advanced Options", open=False):
36
- seed = gr.Slider(
37
- label="Seed",
38
- minimum=0,
39
- maximum=MAX_SEED,
40
- step=1,
41
- value=1234,
42
- min_width=100,
43
- )
 
 
44
  with gr.Column():
45
  num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
46
  octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
@@ -57,6 +172,11 @@ with gr.Blocks().queue() as demo:
57
  gr.Markdown("#### Image Examples")
58
  gr.Examples(examples=example_imgs, inputs=[image],
59
  label=None, examples_per_page=18)
60
-
 
 
 
 
 
61
 
62
  demo.launch()
 
1
+ import os
2
  import spaces
3
+ import random
4
+ import shutil
5
  import gradio as gr
6
  from glob import glob
7
+ from pathlib import Path
8
+ import uuid
9
+ import argparse
10
+ import torch
11
 
12
 
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
15
+ parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
16
+ parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
17
+ parser.add_argument('--port', type=int, default=7860)
18
+ parser.add_argument('--host', type=str, default='0.0.0.0')
19
+ parser.add_argument('--device', type=str, default='cuda')
20
+ parser.add_argument('--mc_algo', type=str, default='mc')
21
+ parser.add_argument('--cache_path', type=str, default='gradio_cache')
22
+ parser.add_argument('--enable_t23d', action='store_true')
23
+ parser.add_argument('--disable_tex', action='store_true')
24
+ parser.add_argument('--enable_flashvdm', action='store_true')
25
+ parser.add_argument('--compile', action='store_true')
26
+ parser.add_argument('--low_vram_mode', action='store_true')
27
+ args = parser.parse_args()
28
+ args.enable_flashvdm = True
29
+
30
+ SAVE_DIR = args.cache_path
31
+ os.makedirs(SAVE_DIR, exist_ok=True)
32
+
33
+
34
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
35
+ if randomize_seed:
36
+ seed = random.randint(0, MAX_SEED)
37
+ return seed
38
+
39
+
40
+ def gen_save_folder(max_size=200):
41
+ os.makedirs(SAVE_DIR, exist_ok=True)
42
+
43
+ # 获取所有文件夹路径
44
+ dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
45
+
46
+ # 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
47
+ if len(dirs) >= max_size:
48
+ # 按创建时间排序,最久的排在前面
49
+ oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
50
+ shutil.rmtree(oldest_dir)
51
+ print(f"Removed the oldest folder: {oldest_dir}")
52
+
53
+ # 生成一个新的 uuid 文件夹名称
54
+ new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
55
+ os.makedirs(new_folder, exist_ok=True)
56
+ print(f"Created new folder: {new_folder}")
57
+
58
+ return new_folder
59
+
60
+
61
+ from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
62
+ Hunyuan3DDiTFlowMatchingPipeline
63
+ from hy3dgen.rembg import BackgroundRemover
64
+
65
+ rmbg_worker = BackgroundRemover()
66
+ i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
67
+ args.model_path,
68
+ subfolder=args.subfolder,
69
+ use_safetensors=True,
70
+ device=args.device,
71
+ )
72
+ if args.enable_flashvdm:
73
+ mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
74
+ i23d_worker.enable_flashvdm(mc_algo=mc_algo)
75
+ if args.compile:
76
+ i23d_worker.compile()
77
+
78
+ progress=gr.Progress()
79
+
80
  @spaces.GPU(duration=60)
81
+ def gen_shape(
82
+ image=None,
83
+ steps=50,
84
+ guidance_scale=7.5,
85
+ seed=1234,
86
+ octree_resolution=256,
87
+ num_chunks=200000,
88
+ target_face_num=10000,
89
+ randomize_seed: bool = False,
90
+ ):
91
+
92
+ def callback(step_idx, timestep, outputs):
93
+ progress_value = (step_idx+1.0)/steps
94
+ progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps")
95
+
96
+
97
+ if image is None:
98
+ raise gr.Error("Please provide either a caption or an image.")
99
+
100
+ seed = int(randomize_seed_fn(seed, randomize_seed))
101
+ octree_resolution = int(octree_resolution)
102
+ save_folder = gen_save_folder()
103
+
104
+ image = rmbg_worker(image.convert('RGB'))
105
+
106
+ generator = torch.Generator()
107
+ generator = generator.manual_seed(int(seed))
108
+ outputs = i23d_worker(
109
+ image=image,
110
+ num_inference_steps=steps,
111
+ guidance_scale=guidance_scale,
112
+ generator=generator,
113
+ octree_resolution=octree_resolution,
114
+ num_chunks=num_chunks,
115
+ output_type='mesh',
116
+ callback=callback
117
+ )
118
+ print(outputs)
119
+
120
+
121
+
122
 
123
  def get_example_img_list():
124
  print('Loading example img list ...')
 
146
  image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
147
  gen_button = gr.Button(value='Generate Shape', variant='primary')
148
  with gr.Accordion("Advanced Options", open=False):
149
+ with gr.Column():
150
+ seed = gr.Slider(
151
+ label="Seed",
152
+ minimum=0,
153
+ maximum=MAX_SEED,
154
+ step=1,
155
+ value=1234,
156
+ min_width=100,
157
+ )
158
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
159
  with gr.Column():
160
  num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
161
  octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
 
172
  gr.Markdown("#### Image Examples")
173
  gr.Examples(examples=example_imgs, inputs=[image],
174
  label=None, examples_per_page=18)
175
+
176
+ gen_button.click(
177
+ fn=gen_shape,
178
+ inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed],
179
+ outputs=[html_export_mesh]
180
+ )
181
 
182
  demo.launch()