Spaces:
Sleeping
Sleeping
[ref] remove audio and text endpoints
Browse files- tasks/audio.py +0 -88
- tasks/text.py +0 -92
tasks/audio.py
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
from fastapi import APIRouter
|
2 |
-
from datetime import datetime
|
3 |
-
from datasets import load_dataset
|
4 |
-
from sklearn.metrics import accuracy_score
|
5 |
-
import random
|
6 |
-
import os
|
7 |
-
|
8 |
-
from .utils.evaluation import AudioEvaluationRequest
|
9 |
-
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
10 |
-
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
load_dotenv()
|
13 |
-
|
14 |
-
router = APIRouter()
|
15 |
-
|
16 |
-
DESCRIPTION = "Random Baseline"
|
17 |
-
ROUTE = "/audio"
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
@router.post(ROUTE, tags=["Audio Task"],
|
22 |
-
description=DESCRIPTION)
|
23 |
-
async def evaluate_audio(request: AudioEvaluationRequest):
|
24 |
-
"""
|
25 |
-
Evaluate audio classification for rainforest sound detection.
|
26 |
-
|
27 |
-
Current Model: Random Baseline
|
28 |
-
- Makes random predictions from the label space (0-1)
|
29 |
-
- Used as a baseline for comparison
|
30 |
-
"""
|
31 |
-
# Get space info
|
32 |
-
username, space_url = get_space_info()
|
33 |
-
|
34 |
-
# Define the label mapping
|
35 |
-
LABEL_MAPPING = {
|
36 |
-
"chainsaw": 0,
|
37 |
-
"environment": 1
|
38 |
-
}
|
39 |
-
# Load and prepare the dataset
|
40 |
-
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
41 |
-
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
42 |
-
|
43 |
-
# Split dataset
|
44 |
-
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
45 |
-
test_dataset = train_test["test"]
|
46 |
-
|
47 |
-
# Start tracking emissions
|
48 |
-
tracker.start()
|
49 |
-
tracker.start_task("inference")
|
50 |
-
|
51 |
-
#--------------------------------------------------------------------------------------------
|
52 |
-
# YOUR MODEL INFERENCE CODE HERE
|
53 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
54 |
-
#--------------------------------------------------------------------------------------------
|
55 |
-
|
56 |
-
# Make random predictions (placeholder for actual model inference)
|
57 |
-
true_labels = test_dataset["label"]
|
58 |
-
predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
|
59 |
-
|
60 |
-
#--------------------------------------------------------------------------------------------
|
61 |
-
# YOUR MODEL INFERENCE STOPS HERE
|
62 |
-
#--------------------------------------------------------------------------------------------
|
63 |
-
|
64 |
-
# Stop tracking emissions
|
65 |
-
emissions_data = tracker.stop_task()
|
66 |
-
|
67 |
-
# Calculate accuracy
|
68 |
-
accuracy = accuracy_score(true_labels, predictions)
|
69 |
-
|
70 |
-
# Prepare results dictionary
|
71 |
-
results = {
|
72 |
-
"username": username,
|
73 |
-
"space_url": space_url,
|
74 |
-
"submission_timestamp": datetime.now().isoformat(),
|
75 |
-
"model_description": DESCRIPTION,
|
76 |
-
"accuracy": float(accuracy),
|
77 |
-
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
78 |
-
"emissions_gco2eq": emissions_data.emissions * 1000,
|
79 |
-
"emissions_data": clean_emissions_data(emissions_data),
|
80 |
-
"api_route": ROUTE,
|
81 |
-
"dataset_config": {
|
82 |
-
"dataset_name": request.dataset_name,
|
83 |
-
"test_size": request.test_size,
|
84 |
-
"test_seed": request.test_seed
|
85 |
-
}
|
86 |
-
}
|
87 |
-
|
88 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tasks/text.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
from fastapi import APIRouter
|
2 |
-
from datetime import datetime
|
3 |
-
from datasets import load_dataset
|
4 |
-
from sklearn.metrics import accuracy_score
|
5 |
-
import random
|
6 |
-
|
7 |
-
from .utils.evaluation import TextEvaluationRequest
|
8 |
-
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
-
|
10 |
-
router = APIRouter()
|
11 |
-
|
12 |
-
DESCRIPTION = "Random Baseline"
|
13 |
-
ROUTE = "/text"
|
14 |
-
|
15 |
-
@router.post(ROUTE, tags=["Text Task"],
|
16 |
-
description=DESCRIPTION)
|
17 |
-
async def evaluate_text(request: TextEvaluationRequest):
|
18 |
-
"""
|
19 |
-
Evaluate text classification for climate disinformation detection.
|
20 |
-
|
21 |
-
Current Model: Random Baseline
|
22 |
-
- Makes random predictions from the label space (0-7)
|
23 |
-
- Used as a baseline for comparison
|
24 |
-
"""
|
25 |
-
# Get space info
|
26 |
-
username, space_url = get_space_info()
|
27 |
-
|
28 |
-
# Define the label mapping
|
29 |
-
LABEL_MAPPING = {
|
30 |
-
"0_not_relevant": 0,
|
31 |
-
"1_not_happening": 1,
|
32 |
-
"2_not_human": 2,
|
33 |
-
"3_not_bad": 3,
|
34 |
-
"4_solutions_harmful_unnecessary": 4,
|
35 |
-
"5_science_unreliable": 5,
|
36 |
-
"6_proponents_biased": 6,
|
37 |
-
"7_fossil_fuels_needed": 7
|
38 |
-
}
|
39 |
-
|
40 |
-
# Load and prepare the dataset
|
41 |
-
dataset = load_dataset(request.dataset_name)
|
42 |
-
|
43 |
-
# Convert string labels to integers
|
44 |
-
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
45 |
-
|
46 |
-
# Split dataset
|
47 |
-
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
48 |
-
test_dataset = train_test["test"]
|
49 |
-
|
50 |
-
# Start tracking emissions
|
51 |
-
tracker.start()
|
52 |
-
tracker.start_task("inference")
|
53 |
-
|
54 |
-
#--------------------------------------------------------------------------------------------
|
55 |
-
# YOUR MODEL INFERENCE CODE HERE
|
56 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
-
#--------------------------------------------------------------------------------------------
|
58 |
-
|
59 |
-
# Make random predictions (placeholder for actual model inference)
|
60 |
-
true_labels = test_dataset["label"]
|
61 |
-
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
-
|
63 |
-
#--------------------------------------------------------------------------------------------
|
64 |
-
# YOUR MODEL INFERENCE STOPS HERE
|
65 |
-
#--------------------------------------------------------------------------------------------
|
66 |
-
|
67 |
-
|
68 |
-
# Stop tracking emissions
|
69 |
-
emissions_data = tracker.stop_task()
|
70 |
-
|
71 |
-
# Calculate accuracy
|
72 |
-
accuracy = accuracy_score(true_labels, predictions)
|
73 |
-
|
74 |
-
# Prepare results dictionary
|
75 |
-
results = {
|
76 |
-
"username": username,
|
77 |
-
"space_url": space_url,
|
78 |
-
"submission_timestamp": datetime.now().isoformat(),
|
79 |
-
"model_description": DESCRIPTION,
|
80 |
-
"accuracy": float(accuracy),
|
81 |
-
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
82 |
-
"emissions_gco2eq": emissions_data.emissions * 1000,
|
83 |
-
"emissions_data": clean_emissions_data(emissions_data),
|
84 |
-
"api_route": ROUTE,
|
85 |
-
"dataset_config": {
|
86 |
-
"dataset_name": request.dataset_name,
|
87 |
-
"test_size": request.test_size,
|
88 |
-
"test_seed": request.test_seed
|
89 |
-
}
|
90 |
-
}
|
91 |
-
|
92 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|