Update tasks/text.py
Browse files- tasks/text.py +2 -0
tasks/text.py
CHANGED
|
@@ -84,6 +84,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 84 |
|
| 85 |
test_dataset_0 = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
|
| 86 |
test_loader = DataLoader(test_dataset_0, batch_size=16)
|
|
|
|
| 87 |
|
| 88 |
predictions = []
|
| 89 |
with torch.no_grad():
|
|
@@ -92,6 +93,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 92 |
outputs = model(input_ids, attention_mask=attention_mask)
|
| 93 |
preds = torch.argmax(outputs.logits, dim=1)
|
| 94 |
predictions.extend(preds.cpu().numpy())
|
|
|
|
| 95 |
|
| 96 |
true_labels = test_dataset["label"]
|
| 97 |
|
|
|
|
| 84 |
|
| 85 |
test_dataset_0 = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
|
| 86 |
test_loader = DataLoader(test_dataset_0, batch_size=16)
|
| 87 |
+
print('encoded')
|
| 88 |
|
| 89 |
predictions = []
|
| 90 |
with torch.no_grad():
|
|
|
|
| 93 |
outputs = model(input_ids, attention_mask=attention_mask)
|
| 94 |
preds = torch.argmax(outputs.logits, dim=1)
|
| 95 |
predictions.extend(preds.cpu().numpy())
|
| 96 |
+
print('here's a batch')
|
| 97 |
|
| 98 |
true_labels = test_dataset["label"]
|
| 99 |
|