Spaces:
Sleeping
Sleeping
| from fastapi import APIRouter | |
| from datetime import datetime | |
| from datasets import load_dataset | |
| import numpy as np | |
| from sklearn.metrics import accuracy_score | |
| import random | |
| import os | |
| from .utils.evaluation import ImageEvaluationRequest | |
| from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| router = APIRouter() | |
| DESCRIPTION = "Random Baseline" | |
| ROUTE = "/image" | |
| def parse_boxes(annotation_string): | |
| """Parse multiple boxes from a single annotation string. | |
| Each box has 5 values: class_id, x_center, y_center, width, height""" | |
| values = [float(x) for x in annotation_string.strip().split()] | |
| boxes = [] | |
| # Each box has 5 values | |
| for i in range(0, len(values), 5): | |
| if i + 5 <= len(values): | |
| # Skip class_id (first value) and take the next 4 values | |
| box = values[i+1:i+5] | |
| boxes.append(box) | |
| return boxes | |
| def compute_iou(box1, box2): | |
| """Compute Intersection over Union (IoU) between two YOLO format boxes.""" | |
| # Convert YOLO format (x_center, y_center, width, height) to corners | |
| def yolo_to_corners(box): | |
| x_center, y_center, width, height = box | |
| x1 = x_center - width/2 | |
| y1 = y_center - height/2 | |
| x2 = x_center + width/2 | |
| y2 = y_center + height/2 | |
| return np.array([x1, y1, x2, y2]) | |
| box1_corners = yolo_to_corners(box1) | |
| box2_corners = yolo_to_corners(box2) | |
| # Calculate intersection | |
| x1 = max(box1_corners[0], box2_corners[0]) | |
| y1 = max(box1_corners[1], box2_corners[1]) | |
| x2 = min(box1_corners[2], box2_corners[2]) | |
| y2 = min(box1_corners[3], box2_corners[3]) | |
| intersection = max(0, x2 - x1) * max(0, y2 - y1) | |
| # Calculate union | |
| box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1]) | |
| box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1]) | |
| union = box1_area + box2_area - intersection | |
| return intersection / (union + 1e-6) | |
| def compute_max_iou(true_boxes, pred_box): | |
| """Compute maximum IoU between a predicted box and all true boxes""" | |
| max_iou = 0 | |
| for true_box in true_boxes: | |
| iou = compute_iou(true_box, pred_box) | |
| max_iou = max(max_iou, iou) | |
| return max_iou | |
| async def evaluate_image(request: ImageEvaluationRequest): | |
| """ | |
| Evaluate image classification and object detection for forest fire smoke. | |
| Current Model: Random Baseline | |
| - Makes random predictions for both classification and bounding boxes | |
| - Used as a baseline for comparison | |
| Metrics: | |
| - Classification accuracy: Whether an image contains smoke or not | |
| - Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes | |
| """ | |
| # Get space info | |
| username, space_url = get_space_info() | |
| # Load and prepare the dataset | |
| dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN")) | |
| # Split dataset | |
| train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
| test_dataset = train_test["test"] | |
| # Start tracking emissions | |
| tracker.start() | |
| tracker.start_task("inference") | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE CODE HERE | |
| # Update the code below to replace the random baseline with your model inference | |
| #-------------------------------------------------------------------------------------------- | |
| predictions = [] | |
| true_labels = [] | |
| pred_boxes = [] | |
| true_boxes_list = [] # List of lists, each inner list contains boxes for one image | |
| for example in test_dataset: | |
| # Parse true annotation (YOLO format: class_id x_center y_center width height) | |
| annotation = example.get("annotations", "").strip() | |
| has_smoke = len(annotation) > 0 | |
| true_labels.append(int(has_smoke)) | |
| # Make random classification prediction | |
| pred_has_smoke = random.random() > 0.5 | |
| predictions.append(int(pred_has_smoke)) | |
| # If there's a true box, parse it and make random box prediction | |
| if has_smoke: | |
| # Parse all true boxes from the annotation | |
| image_true_boxes = parse_boxes(annotation) | |
| true_boxes_list.append(image_true_boxes) | |
| # For baseline, make one random box prediction per image | |
| # In a real model, you might want to predict multiple boxes | |
| random_box = [ | |
| random.random(), # x_center | |
| random.random(), # y_center | |
| random.random() * 0.5, # width (max 0.5) | |
| random.random() * 0.5 # height (max 0.5) | |
| ] | |
| pred_boxes.append(random_box) | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE STOPS HERE | |
| #-------------------------------------------------------------------------------------------- | |
| # Stop tracking emissions | |
| emissions_data = tracker.stop_task() | |
| # Calculate classification accuracy | |
| classification_accuracy = accuracy_score(true_labels, predictions) | |
| # Calculate mean IoU for object detection (only for images with smoke) | |
| # For each image, we compute the max IoU between the predicted box and all true boxes | |
| ious = [] | |
| for true_boxes, pred_box in zip(true_boxes_list, pred_boxes): | |
| max_iou = compute_max_iou(true_boxes, pred_box) | |
| ious.append(max_iou) | |
| mean_iou = float(np.mean(ious)) if ious else 0.0 | |
| # Prepare results dictionary | |
| results = { | |
| "username": username, | |
| "space_url": space_url, | |
| "submission_timestamp": datetime.now().isoformat(), | |
| "model_description": DESCRIPTION, | |
| "classification_accuracy": float(classification_accuracy), | |
| "mean_iou": mean_iou, | |
| "energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
| "emissions_gco2eq": emissions_data.emissions * 1000, | |
| "emissions_data": clean_emissions_data(emissions_data), | |
| "api_route": ROUTE, | |
| "dataset_config": { | |
| "dataset_name": request.dataset_name, | |
| "test_size": request.test_size, | |
| "test_seed": request.test_seed | |
| } | |
| } | |
| return results |