Spaces:
Sleeping
Sleeping
Update src/brain.py
Browse files- src/brain.py +2 -2
src/brain.py
CHANGED
@@ -3,10 +3,10 @@ from transformers import BertTokenizer, BertForSequenceClassification
|
|
3 |
tokenizer = BertTokenizer.from_pretrained('juridics/bertimbaulaw-base-portuguese-sts-scale')
|
4 |
model = BertForSequenceClassification.from_pretrained('juridics/bertimbaulaw-base-portuguese-sts-scale')
|
5 |
|
6 |
-
def generate_answers(query,
|
7 |
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
|
8 |
outputs = model(**inputs)
|
9 |
prediction = torch.argmax(outputs.logits, dim=1)
|
10 |
-
labels =
|
11 |
predicted_label = labels[prediction]
|
12 |
return predicted_label
|
|
|
3 |
tokenizer = BertTokenizer.from_pretrained('juridics/bertimbaulaw-base-portuguese-sts-scale')
|
4 |
model = BertForSequenceClassification.from_pretrained('juridics/bertimbaulaw-base-portuguese-sts-scale')
|
5 |
|
6 |
+
def generate_answers(query, data):
|
7 |
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
|
8 |
outputs = model(**inputs)
|
9 |
prediction = torch.argmax(outputs.logits, dim=1)
|
10 |
+
labels = data.columns # Substitua com suas etiquetas reais
|
11 |
predicted_label = labels[prediction]
|
12 |
return predicted_label
|