from transformers import GPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") model = GPT2LMHeadModel.from_pretrained("distilgpt2") def generate_answers(query): input_ids = tokenizer.encode(input_text, return_tensors='pt') max_length = input_ids.shape[1] + 100 generated_ids = model.generate(input_ids, max_length=max_length) generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return generated_text