File size: 4,071 Bytes
03d6e86
 
 
 
 
caea1f5
03d6e86
bafee93
57c5821
49124ad
de6d203
57c5821
49124ad
57c5821
5f82549
 
91e5f2f
 
 
 
 
 
 
 
 
 
 
 
b1a6dfa
de6d203
048e2e2
03d6e86
 
caea1f5
91e5f2f
caea1f5
 
 
91e5f2f
 
 
 
 
bafee93
57c5821
b1a6dfa
 
5f82549
57c5821
caea1f5
 
5f82549
 
57c5821
b1a6dfa
bafee93
91e5f2f
b1a6dfa
91e5f2f
 
03d6e86
 
 
 
 
57c5821
03d6e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adca6f
03d6e86
 
 
 
 
 
 
 
 
 
 
 
 
 
57c5821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import streamlit as st
import pandas as pd
import torch
from transformers import pipeline
import datetime
from rapidfuzz import process, fuzz

# Load the CSV file
df = pd.read_csv("anomalies.csv", quotechar='"')

# Convert 'real' column to standard float format and then to strings
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")

# Fill NaN values and convert all columns to strings
df = df.fillna('').astype(str)

# Function to filter the DataFrame using RapidFuzz
def filter_dataframe(df, date_str, group_keyword, threshold=80):
    # Apply fuzzy matching on the 'ds' (date) and 'Group' columns
    date_matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None)
    group_matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None)

    # Get the indices that match both criteria
    date_indices = {match[2] for match in date_matches if match[1] >= threshold}
    group_indices = {match[2] for match in group_matches if match[1] >= threshold}
    common_indices = list(date_indices & group_indices)

    return df.iloc[common_indices]

# Function to generate a response using the TAPAS model
def response(user_question, df):
    a = datetime.datetime.now()

    # Extract date and group keywords from the user question
    date_str = "December 2022"  # Example; you'd extract this from the user question dynamically
    group_keyword = "IPVA"

    # Filter the DataFrame by date and group
    subset_df = filter_dataframe(df, date_str, group_keyword)

    # Check if the DataFrame is empty
    if subset_df.empty:
        return {"Resposta": "Desculpe, não há dados disponíveis para responder à sua pergunta."}

    # Initialize the TAPAS model
    tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", 
                   tokenizer_kwargs={"clean_up_tokenization_spaces": False})

    # Debugging information
    print("Filtered DataFrame shape:", subset_df.shape)
    print("Filtered DataFrame head:\n", subset_df.head())
    print("User question:", user_question)

    # Query the TAPAS model
    try:
        answer = tqa(table=subset_df, query=user_question)['answer']
    except ValueError as e:
        print(f"Error: {e}")
        answer = "Desculpe, ocorreu um erro ao processar sua pergunta."

    query_result = {
        "Resposta": answer
    }

    b = datetime.datetime.now()
    print("Time taken:", b - a)

    return query_result

# Streamlit interface
st.markdown("""
<div style='display: flex; align-items: center;'>
    <div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
    <div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
    <div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
    <span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)

# Chat history
if 'history' not in st.session_state:
    st.session_state['history'] = []

# Input box for user question
user_question = st.text_input("Escreva sua questão aqui:", "")

if user_question:
    # Add human emoji when user asks a question
    st.session_state['history'].append(('👤', user_question))
    st.markdown(f"**👤 {user_question}**")
    
    # Generate the response
    bot_response = response(user_question, df)["Resposta"]
    
    # Add robot emoji when generating response and align to the right
    st.session_state['history'].append(('🤖', bot_response))
    st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)

# Clear history button
if st.button("Limpar"):
    st.session_state['history'] = []

# Display chat history
for sender, message in st.session_state['history']:
    if sender == '👤':
        st.markdown(f"**👤 {message}**")
    elif sender == '🤖':
        st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)