Spaces:
Running
Running
File size: 3,184 Bytes
03d6e86 bafee93 57c5821 49124ad de6d203 57c5821 49124ad 57c5821 5f82549 bafee93 b1a6dfa de6d203 048e2e2 03d6e86 bafee93 57c5821 b1a6dfa 5f82549 57c5821 bafee93 5f82549 57c5821 b1a6dfa bafee93 b1a6dfa 03d6e86 57c5821 03d6e86 9adca6f 03d6e86 57c5821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import streamlit as st
import pandas as pd
import torch
from transformers import pipeline
import datetime
# Load the CSV file
df = pd.read_csv("anomalies.csv", quotechar='"')
# Convert 'real' column to standard float format and then to strings
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
# Fill NaN values and convert all columns to strings
df = df.fillna('').astype(str)
# Subset the DataFrame for the relevant query
def subset_dataframe(df, date, group_keyword):
subset_df = df[(df['ds'] == date) & (df['Group'].str.contains(group_keyword, case=False))]
return subset_df
# Function to generate a response using the TAPAS model
def response(user_question, df):
a = datetime.datetime.now()
# Subset the DataFrame for December 2022 and IPVA
subset_df = subset_dataframe(df, "2022-12-01", "IPVA")
# Initialize the TAPAS model
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
tokenizer_kwargs={"clean_up_tokenization_spaces": False})
# Debugging information
print("Subset DataFrame shape:", subset_df.shape)
print("Subset DataFrame head:\n", subset_df.head())
print("User question:", user_question)
# Query the TAPAS model
try:
answer = tqa(table=subset_df, query=user_question)['answer']
except IndexError as e:
print(f"Error: {e}")
answer = "Error occurred: " + str(e)
query_result = {
"Resposta": answer
}
b = datetime.datetime.now()
print("Time taken:", b - a)
return query_result
# Streamlit interface
st.markdown("""
<div style='display: flex; align-items: center;'>
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)
# Chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# Input box for user question
user_question = st.text_input("Escreva sua questão aqui:", "")
if user_question:
# Add human emoji when user asks a question
st.session_state['history'].append(('👤', user_question))
st.markdown(f"**👤 {user_question}**")
# Generate the response
bot_response = response(user_question, df)["Resposta"]
# Add robot emoji when generating response and align to the right
st.session_state['history'].append(('🤖', bot_response))
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
# Clear history button
if st.button("Limpar"):
st.session_state['history'] = []
# Display chat history
for sender, message in st.session_state['history']:
if sender == '👤':
st.markdown(f"**👤 {message}**")
elif sender == '🤖':
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)
|