Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer | |
| import datetime | |
| import sentencepiece as spm | |
| # Load CSV file | |
| df = pd.read_csv("anomalies_with_explanations_pt.csv", quotechar='"', encoding='utf-8') | |
| df.rename(columns={"ds": "datetime", "real": "monetary value", "Explicação": "explanation"}, inplace=True) | |
| df.sort_values(by=['datetime', 'monetary value'], ascending=False, inplace=True) | |
| df = df[df['monetary value'] >= 10000000.] | |
| df['monetary value'] = df['monetary value'].apply(lambda x: f"{x:.2f}") | |
| df = df.fillna('').astype(str) | |
| table_data = df | |
| # Load translation models | |
| pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
| en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5") | |
| tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
| # Load TAPEX model | |
| tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
| tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
| def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): | |
| input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
| outputs = model.generate(input_ids) | |
| translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return translated_text | |
| def response(user_question, table_data): | |
| # Traduz a pergunta para o inglês | |
| question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") | |
| print(question_en) | |
| # Gera a resposta em inglês | |
| encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True) | |
| outputs = tapex_model.generate(**encoding) | |
| response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
| print(response_en) | |
| # Traduz a resposta para o português | |
| response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") | |
| return response_pt | |
| # Streamlit interface | |
| st.dataframe(table_data.head()) | |
| st.markdown(""" | |
| <div style='display: flex; align-items: center;'> | |
| <div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div> | |
| <div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div> | |
| <div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div> | |
| <span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # Chat history | |
| if 'history' not in st.session_state: | |
| st.session_state['history'] = [] | |
| # Input box for user question | |
| user_question = st.text_input("Escreva sua questão aqui:", "") | |
| if user_question: | |
| # Add human emoji when user asks a question | |
| st.session_state['history'].append(('👤', user_question)) | |
| st.markdown(f"**👤 {user_question}**") | |
| # Generate the response | |
| bot_response = response(user_question, table_data) | |
| # Add robot emoji when generating response and align to the right | |
| st.session_state['history'].append(('🤖', bot_response)) | |
| st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True) | |
| # Clear history button | |
| if st.button("Limpar"): | |
| st.session_state['history'] = [] | |
| # Display chat history | |
| for sender, message in st.session_state['history']: | |
| if sender == '👤': | |
| st.markdown(f"**👤 {message}**") | |
| elif sender == '🤖': | |
| st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True) |