added embeddings
Browse files
app.py
CHANGED
@@ -3,11 +3,15 @@ import torch
|
|
3 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
4 |
from transformers import BitsAndBytesConfig
|
5 |
|
|
|
|
|
6 |
quantization_config = BitsAndBytesConfig(
|
7 |
load_in_4bit=True,
|
8 |
bnb_4bit_compute_dtype=torch.float16
|
9 |
)
|
10 |
|
|
|
|
|
11 |
model_id = "llava-hf/llava-1.5-7b-hf"
|
12 |
|
13 |
processor = AutoProcessor.from_pretrained(model_id)
|
@@ -22,13 +26,13 @@ def text_to_image(image, prompt):
|
|
22 |
prompt = f'USER: <image>\n{prompt}\nASSISTANT:'
|
23 |
|
24 |
inputs = processor([prompt], images=[image], padding=True, return_tensors="pt").to(model.device)
|
25 |
-
|
26 |
-
print(k, v.shape)
|
27 |
-
print(inputs)
|
28 |
-
output = model.generate(**inputs, max_new_tokens=100)
|
29 |
generated_text = processor.batch_decode(output, skip_special_tokens=True)
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
demo = gr.Interface(
|
@@ -37,7 +41,7 @@ demo = gr.Interface(
|
|
37 |
gr.Image(label='Select an image to analyze', type='pil'),
|
38 |
gr.Textbox(label='Enter Prompt')
|
39 |
],
|
40 |
-
outputs=gr.Textbox(label='Maurice says:')
|
41 |
)
|
42 |
|
43 |
if __name__ == "__main__":
|
|
|
3 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
4 |
from transformers import BitsAndBytesConfig
|
5 |
|
6 |
+
from sentence_transformers import SentenceTransformer, util
|
7 |
+
|
8 |
quantization_config = BitsAndBytesConfig(
|
9 |
load_in_4bit=True,
|
10 |
bnb_4bit_compute_dtype=torch.float16
|
11 |
)
|
12 |
|
13 |
+
embedder = SentenceTransformer('all-mpnet-base-v2')
|
14 |
+
|
15 |
model_id = "llava-hf/llava-1.5-7b-hf"
|
16 |
|
17 |
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
26 |
prompt = f'USER: <image>\n{prompt}\nASSISTANT:'
|
27 |
|
28 |
inputs = processor([prompt], images=[image], padding=True, return_tensors="pt").to(model.device)
|
29 |
+
output = model.generate(**inputs, max_new_tokens=500)
|
|
|
|
|
|
|
30 |
generated_text = processor.batch_decode(output, skip_special_tokens=True)
|
31 |
+
text = generated_text.pop()
|
32 |
+
text_output = text.split("ASSISTANT:")[-1]
|
33 |
+
text_embeddings = embedder.encode(text_output)
|
34 |
+
|
35 |
+
return text_output, dict(text_embeddings=text_embeddings)
|
36 |
|
37 |
|
38 |
demo = gr.Interface(
|
|
|
41 |
gr.Image(label='Select an image to analyze', type='pil'),
|
42 |
gr.Textbox(label='Enter Prompt')
|
43 |
],
|
44 |
+
outputs=[gr.Textbox(label='Maurice says:'), gr.JSON(label='Embedded text')]
|
45 |
)
|
46 |
|
47 |
if __name__ == "__main__":
|