Update app.py
Browse files
app.py
CHANGED
@@ -1,611 +1,450 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import numpy as np
|
4 |
-
import soundfile as sf
|
5 |
import os
|
6 |
import tempfile
|
7 |
-
import
|
|
|
|
|
|
|
|
|
8 |
from pathlib import Path
|
9 |
import warnings
|
10 |
-
warnings.filterwarnings(
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
from spleeter.separator import Separator
|
15 |
-
SPLEETER_AVAILABLE = True
|
16 |
-
except ImportError:
|
17 |
-
SPLEETER_AVAILABLE = False
|
18 |
-
print("Spleeter not available - source separation disabled")
|
19 |
|
20 |
-
|
21 |
-
import scipy.signal
|
22 |
-
from scipy.spatial.distance import euclidean
|
23 |
-
from dtw import dtw
|
24 |
-
ADVANCED_FEATURES = True
|
25 |
-
except ImportError:
|
26 |
-
ADVANCED_FEATURES = False
|
27 |
-
print("Advanced features not available")
|
28 |
-
|
29 |
-
class AudioEngine:
|
30 |
-
"""Clean, professional audio processing engine"""
|
31 |
-
|
32 |
def __init__(self):
|
33 |
self.temp_dir = tempfile.mkdtemp()
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
def
|
37 |
-
"""Extract
|
|
|
|
|
|
|
38 |
try:
|
39 |
-
|
40 |
-
y, sr = librosa.load(audio_path)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Spectral features
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
except Exception as e:
|
80 |
-
return
|
81 |
|
82 |
-
def
|
83 |
-
"""
|
84 |
-
if not
|
85 |
-
return
|
86 |
|
87 |
try:
|
88 |
-
|
89 |
-
|
90 |
-
self.separators[model_type] = Separator(f'spleeter:{model_type}-16kHz')
|
91 |
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
output_dir = os.path.join(self.temp_dir, f"separation_{np.random.randint(10000)}")
|
96 |
-
os.makedirs(output_dir, exist_ok=True)
|
97 |
|
98 |
-
#
|
99 |
-
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
vocals_path = os.path.join(result_dir, "vocals.wav")
|
107 |
-
accompaniment_path = os.path.join(result_dir, "accompaniment.wav")
|
108 |
-
|
109 |
-
return {
|
110 |
-
'success': True,
|
111 |
-
'vocals': vocals_path if os.path.exists(vocals_path) else None,
|
112 |
-
'accompaniment': accompaniment_path if os.path.exists(accompaniment_path) else None
|
113 |
-
}
|
114 |
-
|
115 |
-
elif model_type == "4stems":
|
116 |
-
vocals_path = os.path.join(result_dir, "vocals.wav")
|
117 |
-
drums_path = os.path.join(result_dir, "drums.wav")
|
118 |
-
bass_path = os.path.join(result_dir, "bass.wav")
|
119 |
-
other_path = os.path.join(result_dir, "other.wav")
|
120 |
-
|
121 |
-
return {
|
122 |
-
'success': True,
|
123 |
-
'vocals': vocals_path if os.path.exists(vocals_path) else None,
|
124 |
-
'drums': drums_path if os.path.exists(drums_path) else None,
|
125 |
-
'bass': bass_path if os.path.exists(bass_path) else None,
|
126 |
-
'other': other_path if os.path.exists(other_path) else None
|
127 |
-
}
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
try:
|
135 |
-
y, sr = librosa.load(audio_path)
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
y = librosa.effects.pitch_shift(y, sr=sr, n_steps=pitch_shift)
|
140 |
|
141 |
-
#
|
142 |
-
|
143 |
-
reverb_length = int(0.5 * sr)
|
144 |
-
impulse = np.random.randn(reverb_length) * np.exp(-np.arange(reverb_length) / (sr * 0.1))
|
145 |
-
y = scipy.signal.convolve(y, impulse * reverb, mode='same')
|
146 |
-
y = y / np.max(np.abs(y)) # Normalize
|
147 |
|
148 |
-
#
|
149 |
-
|
150 |
-
sf.write(output_path, y, sr)
|
151 |
|
152 |
-
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
def extract_vocal_features(self, audio_path):
|
158 |
-
"""Extract features for style coaching"""
|
159 |
-
try:
|
160 |
-
y, sr = librosa.load(audio_path)
|
161 |
|
162 |
-
#
|
163 |
-
|
164 |
-
|
165 |
-
for t in range(pitches.shape[1]):
|
166 |
-
index = magnitudes[:, t].argmax()
|
167 |
-
pitch = pitches[index, t]
|
168 |
-
if pitch > 0:
|
169 |
-
pitch_values.append(pitch)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
pitch_range = max(pitch_values) - min(pitch_values)
|
178 |
|
179 |
-
|
180 |
-
|
181 |
|
182 |
-
#
|
183 |
-
|
|
|
184 |
|
185 |
-
|
186 |
-
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
|
198 |
except Exception as e:
|
199 |
-
return
|
200 |
|
201 |
-
def
|
202 |
-
"""
|
203 |
-
if not
|
204 |
-
return
|
205 |
|
206 |
try:
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
}
|
|
|
|
|
|
|
|
|
255 |
|
256 |
except Exception as e:
|
257 |
-
return
|
258 |
-
|
259 |
-
def cleanup(self):
|
260 |
-
"""Clean up temporary files"""
|
261 |
-
try:
|
262 |
-
if os.path.exists(self.temp_dir):
|
263 |
-
shutil.rmtree(self.temp_dir)
|
264 |
-
except Exception:
|
265 |
-
pass
|
266 |
|
267 |
-
#
|
268 |
-
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
🔊 Audio Characteristics:
|
283 |
-
• Spectral Centroid: {analysis['spectral_centroid']} Hz
|
284 |
-
• Spectral Rolloff: {analysis['spectral_rolloff']} Hz
|
285 |
-
• Zero Crossing Rate: {analysis['zero_crossing_rate']}
|
286 |
-
• RMS Energy: {analysis['rms_energy']}
|
287 |
-
|
288 |
-
🎤 Vocal Information:
|
289 |
-
• Average Pitch: {analysis['average_pitch']} Hz
|
290 |
-
• Pitch Points Detected: {analysis['pitch_count']}
|
291 |
-
• Beats Detected: {analysis['beats_detected']}"""
|
292 |
-
|
293 |
-
def process_audio_separation(audio_file, separation_mode):
|
294 |
-
"""Main audio separation function"""
|
295 |
-
if not audio_file:
|
296 |
-
return "❌ Please upload an audio file", None, None, None, None, ""
|
297 |
-
|
298 |
-
if not SPLEETER_AVAILABLE:
|
299 |
-
return "❌ Spleeter not available for source separation", None, None, None, None, ""
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
# Separate audio
|
307 |
-
model_type = "2stems" if "2-stem" in separation_mode else "4stems"
|
308 |
-
separation_result = engine.separate_vocals(audio_file, model_type)
|
309 |
-
|
310 |
-
if not separation_result['success']:
|
311 |
-
return f"❌ Separation failed: {separation_result['error']}", None, None, None, None, analysis_text
|
312 |
-
|
313 |
-
if model_type == "2stems":
|
314 |
-
return (
|
315 |
-
"✅ 2-stem separation completed successfully!",
|
316 |
-
separation_result.get('vocals'),
|
317 |
-
separation_result.get('accompaniment'),
|
318 |
-
None,
|
319 |
-
None,
|
320 |
-
analysis_text
|
321 |
-
)
|
322 |
-
else:
|
323 |
-
return (
|
324 |
-
"✅ 4-stem separation completed successfully!",
|
325 |
-
separation_result.get('vocals'),
|
326 |
-
separation_result.get('drums'),
|
327 |
-
separation_result.get('bass'),
|
328 |
-
separation_result.get('other'),
|
329 |
-
analysis_text
|
330 |
-
)
|
331 |
-
|
332 |
-
except Exception as e:
|
333 |
-
return f"❌ Processing error: {str(e)}", None, None, None, None, ""
|
334 |
|
335 |
-
def
|
336 |
-
"""
|
337 |
-
if
|
338 |
-
return "
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
# Apply effects
|
346 |
-
effects_result = engine.apply_effects(audio_file, pitch_shift, reverb_amount)
|
347 |
-
|
348 |
-
if not effects_result['success']:
|
349 |
-
return f"❌ Effects failed: {effects_result['error']}", None, analysis_text
|
350 |
-
|
351 |
-
effects_applied = []
|
352 |
-
if pitch_shift != 0:
|
353 |
-
effects_applied.append(f"Pitch: {pitch_shift:+.1f} semitones")
|
354 |
-
if reverb_amount > 0:
|
355 |
-
effects_applied.append(f"Reverb: {reverb_amount:.2f}")
|
356 |
-
|
357 |
-
status = f"✅ Effects applied: {', '.join(effects_applied)}" if effects_applied else "✅ Audio processed (no effects)"
|
358 |
-
|
359 |
-
return status, effects_result['output'], analysis_text
|
360 |
-
|
361 |
-
except Exception as e:
|
362 |
-
return f"❌ Processing error: {str(e)}", None, ""
|
363 |
|
364 |
-
def
|
365 |
-
"""
|
366 |
-
if
|
367 |
-
return "
|
368 |
-
|
369 |
-
if not user_audio:
|
370 |
-
return "❌ Please record or upload your performance", "", ""
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
# Process reference tracks
|
377 |
-
ref_features = []
|
378 |
-
ref_status = []
|
379 |
-
|
380 |
-
for i, ref_file in enumerate(reference_files[:5]):
|
381 |
-
# Separate vocals
|
382 |
-
separation_result = engine.separate_vocals(ref_file.name, "2stems")
|
383 |
-
if separation_result['success'] and separation_result.get('vocals'):
|
384 |
-
# Extract features
|
385 |
-
features = engine.extract_vocal_features(separation_result['vocals'])
|
386 |
-
if features['success']:
|
387 |
-
ref_features.append(features)
|
388 |
-
ref_status.append(f"✅ Reference {i+1}: Processed")
|
389 |
-
else:
|
390 |
-
ref_status.append(f"❌ Reference {i+1}: Feature extraction failed")
|
391 |
-
else:
|
392 |
-
ref_status.append(f"❌ Reference {i+1}: Vocal separation failed")
|
393 |
-
|
394 |
-
if len(ref_features) < 2:
|
395 |
-
return "❌ Need at least 2 valid reference tracks", "\n".join(ref_status), ""
|
396 |
-
|
397 |
-
# Process user audio
|
398 |
-
user_separation = engine.separate_vocals(user_audio, "2stems")
|
399 |
-
if not user_separation['success'] or not user_separation.get('vocals'):
|
400 |
-
return "❌ Could not separate vocals from your performance", "\n".join(ref_status), ""
|
401 |
-
|
402 |
-
user_features = engine.extract_vocal_features(user_separation['vocals'])
|
403 |
-
if not user_features['success']:
|
404 |
-
return "❌ Could not analyze your vocal features", "\n".join(ref_status), ""
|
405 |
-
|
406 |
-
# Compare styles
|
407 |
-
comparison = engine.compare_vocal_styles(user_features, ref_features)
|
408 |
-
if not comparison['success']:
|
409 |
-
return f"❌ Style comparison failed: {comparison['error']}", "\n".join(ref_status), ""
|
410 |
-
|
411 |
-
# Format feedback
|
412 |
-
feedback_text = f"""🎯 Vocal Style Coaching Results
|
413 |
-
|
414 |
-
📊 Overall Score: {comparison['score']}/100
|
415 |
-
|
416 |
-
🎵 Detailed Feedback:
|
417 |
-
{chr(10).join(comparison['feedback'])}
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
• Energy Difference: {comparison['metrics']['energy_diff']}
|
424 |
-
|
425 |
-
🎯 Recommendations:
|
426 |
-
{f"🔥 Excellent! You're very close to the target style." if comparison['score'] > 80 else
|
427 |
-
f"📈 Good progress! Focus on the areas mentioned above." if comparison['score'] > 60 else
|
428 |
-
f"💪 Keep practicing! Work on basic vocal technique first."}
|
429 |
-
|
430 |
-
References analyzed: {len(ref_features)}/5"""
|
431 |
-
|
432 |
-
return f"✅ Style coaching complete! Score: {comparison['score']}/100", "\n".join(ref_status), feedback_text
|
433 |
|
434 |
-
|
435 |
-
return f"❌ Coaching failed: {str(e)}", "", ""
|
436 |
-
|
437 |
-
# Create main interface
|
438 |
-
def create_app():
|
439 |
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
|
449 |
-
with gr.
|
450 |
-
|
451 |
-
|
452 |
-
with gr.
|
453 |
-
gr.
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
sep_audio_input = gr.Audio(type="filepath", label="Upload Audio File", sources=["upload"])
|
458 |
-
sep_mode = gr.Dropdown(
|
459 |
-
choices=["2-stem (Vocals + Instrumental)", "4-stem (Vocals + Drums + Bass + Other)"],
|
460 |
-
value="2-stem (Vocals + Instrumental)",
|
461 |
-
label="Separation Mode"
|
462 |
-
)
|
463 |
-
sep_button = gr.Button("🎯 Separate Audio", variant="primary")
|
464 |
-
|
465 |
-
with gr.Column():
|
466 |
-
sep_status = gr.Textbox(label="Status", lines=2, interactive=False)
|
467 |
-
sep_analysis = gr.Textbox(label="Audio Analysis", lines=12, interactive=False)
|
468 |
|
469 |
-
with gr.
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
with gr.Row():
|
474 |
-
sep_bass = gr.Audio(label="🎸 Bass", show_download_button=True)
|
475 |
-
sep_other = gr.Audio(label="🎹 Other", show_download_button=True)
|
476 |
-
|
477 |
-
# Vocal Effects Tab
|
478 |
-
with gr.Tab("🎛️ Vocal Effects"):
|
479 |
-
gr.Markdown("### Apply professional vocal effects")
|
480 |
-
|
481 |
-
with gr.Row():
|
482 |
-
with gr.Column():
|
483 |
-
fx_audio_input = gr.Audio(type="filepath", label="Upload Audio File", sources=["upload"])
|
484 |
-
fx_pitch = gr.Slider(-12, 12, 0, step=0.5, label="Pitch Shift (semitones)")
|
485 |
-
fx_reverb = gr.Slider(0, 0.5, 0, step=0.05, label="Reverb Amount")
|
486 |
-
fx_button = gr.Button("🎵 Apply Effects", variant="primary")
|
487 |
-
|
488 |
-
with gr.Column():
|
489 |
-
fx_status = gr.Textbox(label="Status", lines=2, interactive=False)
|
490 |
-
fx_analysis = gr.Textbox(label="Audio Analysis", lines=10, interactive=False)
|
491 |
-
|
492 |
-
fx_output = gr.Audio(label="🎧 Processed Audio", show_download_button=True)
|
493 |
-
|
494 |
-
# Live Recording Tab
|
495 |
-
with gr.Tab("🎙️ Live Recording"):
|
496 |
-
gr.Markdown("### Record and process your voice in real-time")
|
497 |
|
498 |
-
with gr.
|
499 |
-
with gr.
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
with gr.Column():
|
506 |
-
live_status = gr.Textbox(label="Status", lines=2, interactive=False)
|
507 |
-
live_analysis = gr.Textbox(label="Recording Analysis", lines=10, interactive=False)
|
508 |
-
|
509 |
-
live_output = gr.Audio(label="🎧 Processed Recording", show_download_button=True)
|
510 |
-
|
511 |
-
# Style Coaching Tab
|
512 |
-
with gr.Tab("🎭 Style Coaching"):
|
513 |
-
gr.Markdown("### Get personalized vocal coaching feedback")
|
514 |
-
|
515 |
-
with gr.Row():
|
516 |
-
with gr.Column():
|
517 |
-
coach_refs = gr.File(
|
518 |
-
label="Reference Tracks (2-5 files)",
|
519 |
-
file_count="multiple",
|
520 |
-
file_types=["audio"]
|
521 |
)
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
)
|
527 |
-
coach_button = gr.Button("🎯 Get Coaching", variant="primary")
|
528 |
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
coach_feedback = gr.Textbox(label="🎯 Coaching Feedback", lines=15, interactive=False)
|
534 |
-
|
535 |
-
# Help Tab
|
536 |
-
with gr.Tab("ℹ️ Help"):
|
537 |
-
gr.Markdown("""
|
538 |
-
# 🎤 Audio Singing Helper - User Guide
|
539 |
-
|
540 |
-
## Features
|
541 |
-
|
542 |
-
### 🎵 Audio Separation
|
543 |
-
- Upload any song to separate vocals from instruments
|
544 |
-
- Choose 2-stem (vocals + instrumental) or 4-stem (vocals + drums + bass + other)
|
545 |
-
- Get detailed audio analysis of your tracks
|
546 |
-
|
547 |
-
### 🎛️ Vocal Effects
|
548 |
-
- Apply pitch shifting (-12 to +12 semitones)
|
549 |
-
- Add reverb for spatial depth
|
550 |
-
- Process any audio file with professional effects
|
551 |
-
|
552 |
-
### 🎙️ Live Recording
|
553 |
-
- Record directly from your microphone
|
554 |
-
- Apply real-time pitch correction and reverb
|
555 |
-
- Perfect for vocal practice and experimentation
|
556 |
-
|
557 |
-
### 🎭 Style Coaching
|
558 |
-
- Upload 2-5 reference tracks from artists you want to emulate
|
559 |
-
- Record or upload your performance
|
560 |
-
- Get AI-powered feedback on pitch, timing, and vocal characteristics
|
561 |
-
- Receive a score and specific improvement suggestions
|
562 |
-
|
563 |
-
## Tips for Best Results
|
564 |
-
|
565 |
-
- **Use high-quality audio files** - better input = better results
|
566 |
-
- **Keep files under 5 minutes** for faster processing
|
567 |
-
- **For style coaching**: Choose references from similar genres
|
568 |
-
- **Record in quiet environments** for best analysis
|
569 |
-
|
570 |
-
## Supported Formats
|
571 |
-
- Input: MP3, WAV, FLAC, M4A, OGG
|
572 |
-
- Output: High-quality WAV files
|
573 |
-
|
574 |
-
## Technical Requirements
|
575 |
-
- Some features require additional dependencies
|
576 |
-
- Processing time varies based on file length and complexity
|
577 |
-
|
578 |
-
---
|
579 |
-
Built for singers and musicians worldwide 🌍
|
580 |
-
""")
|
581 |
-
|
582 |
-
# Connect all the event handlers
|
583 |
-
sep_button.click(
|
584 |
-
process_audio_separation,
|
585 |
-
inputs=[sep_audio_input, sep_mode],
|
586 |
-
outputs=[sep_status, sep_vocals, sep_instrumental, sep_bass, sep_other, sep_analysis]
|
587 |
-
)
|
588 |
-
|
589 |
-
fx_button.click(
|
590 |
-
process_vocal_effects,
|
591 |
-
inputs=[fx_audio_input, fx_pitch, fx_reverb],
|
592 |
-
outputs=[fx_status, fx_output, fx_analysis]
|
593 |
-
)
|
594 |
-
|
595 |
-
live_button.click(
|
596 |
-
process_vocal_effects,
|
597 |
-
inputs=[live_audio, live_pitch, live_reverb],
|
598 |
-
outputs=[live_status, live_output, live_analysis]
|
599 |
-
)
|
600 |
-
|
601 |
-
coach_button.click(
|
602 |
-
process_style_coaching,
|
603 |
-
inputs=[coach_refs, coach_user],
|
604 |
-
outputs=[coach_status, coach_refs_status, coach_feedback]
|
605 |
-
)
|
606 |
|
607 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
608 |
|
609 |
if __name__ == "__main__":
|
610 |
-
app
|
611 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import subprocess
|
|
|
|
|
3 |
import os
|
4 |
import tempfile
|
5 |
+
import librosa
|
6 |
+
import librosa.display
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import scipy.ndimage
|
10 |
from pathlib import Path
|
11 |
import warnings
|
12 |
+
warnings.filterwarnings('ignore')
|
13 |
|
14 |
+
# Set matplotlib backend for web display
|
15 |
+
plt.switch_backend('Agg')
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
class AudioAnalyzer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def __init__(self):
|
19 |
self.temp_dir = tempfile.mkdtemp()
|
20 |
+
|
21 |
+
def download_youtube_audio(self, video_url, progress=gr.Progress()):
|
22 |
+
"""Download audio from YouTube video using yt-dlp."""
|
23 |
+
if not video_url:
|
24 |
+
return None, "Please provide a YouTube URL"
|
25 |
+
|
26 |
+
progress(0.1, desc="Initializing download...")
|
27 |
+
|
28 |
+
output_dir = os.path.join(self.temp_dir, "downloaded_audio")
|
29 |
+
os.makedirs(output_dir, exist_ok=True)
|
30 |
+
|
31 |
+
# yt-dlp command to extract audio in mp3 format
|
32 |
+
command = [
|
33 |
+
"yt-dlp",
|
34 |
+
"-x",
|
35 |
+
"--audio-format", "mp3",
|
36 |
+
"-o", os.path.join(output_dir, "%(title)s.%(ext)s"),
|
37 |
+
"--no-playlist",
|
38 |
+
"--restrict-filenames",
|
39 |
+
video_url
|
40 |
+
]
|
41 |
+
|
42 |
+
try:
|
43 |
+
progress(0.3, desc="Downloading audio...")
|
44 |
+
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
45 |
+
|
46 |
+
# Find the downloaded file
|
47 |
+
for file in os.listdir(output_dir):
|
48 |
+
if file.endswith('.mp3'):
|
49 |
+
file_path = os.path.join(output_dir, file)
|
50 |
+
progress(1.0, desc="Download complete!")
|
51 |
+
return file_path, f"Successfully downloaded: {file}"
|
52 |
+
|
53 |
+
return None, "Download completed but no audio file found"
|
54 |
+
|
55 |
+
except FileNotFoundError:
|
56 |
+
return None, "yt-dlp not found. Please install it: pip install yt-dlp"
|
57 |
+
except subprocess.CalledProcessError as e:
|
58 |
+
return None, f"Download failed: {e.stderr}"
|
59 |
+
except Exception as e:
|
60 |
+
return None, f"Unexpected error: {str(e)}"
|
61 |
|
62 |
+
def extract_basic_features(self, audio_path, sr=16000, progress=gr.Progress()):
|
63 |
+
"""Extract basic audio features and create visualizations."""
|
64 |
+
if not audio_path or not os.path.exists(audio_path):
|
65 |
+
return None, None, "Invalid audio file"
|
66 |
+
|
67 |
try:
|
68 |
+
progress(0.1, desc="Loading audio...")
|
69 |
+
y, sr = librosa.load(audio_path, sr=sr)
|
70 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
71 |
+
|
72 |
+
# Limit to first 60 seconds for processing speed
|
73 |
+
max_duration = 60
|
74 |
+
if duration > max_duration:
|
75 |
+
y = y[:sr * max_duration]
|
76 |
+
duration = max_duration
|
77 |
+
|
78 |
+
progress(0.3, desc="Computing features...")
|
79 |
+
|
80 |
+
# Basic features
|
81 |
+
features = {}
|
82 |
+
features['duration'] = duration
|
83 |
+
features['sample_rate'] = sr
|
84 |
+
features['samples'] = len(y)
|
85 |
+
|
86 |
+
# Mel spectrogram
|
87 |
+
progress(0.5, desc="Computing mel spectrogram...")
|
88 |
+
hop_length = 512
|
89 |
+
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length)
|
90 |
+
S_dB = librosa.power_to_db(S_mel, ref=np.max)
|
91 |
+
|
92 |
+
# Other features
|
93 |
+
features['tempo'], _ = librosa.beat.beat_track(y=y, sr=sr)
|
94 |
+
features['mfcc'] = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
95 |
+
features['spectral_centroid'] = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
|
96 |
+
features['spectral_rolloff'] = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
|
97 |
+
features['zero_crossing_rate'] = librosa.feature.zero_crossing_rate(y)[0]
|
98 |
+
|
99 |
+
progress(0.8, desc="Creating visualizations...")
|
100 |
+
|
101 |
+
# Create visualizations
|
102 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
|
103 |
+
|
104 |
+
# Waveform
|
105 |
+
time_axis = librosa.frames_to_time(range(len(y)), sr=sr)
|
106 |
+
axes[0, 0].plot(time_axis, y)
|
107 |
+
axes[0, 0].set_title('Waveform')
|
108 |
+
axes[0, 0].set_xlabel('Time (s)')
|
109 |
+
axes[0, 0].set_ylabel('Amplitude')
|
110 |
+
|
111 |
+
# Mel spectrogram
|
112 |
+
librosa.display.specshow(S_dB, sr=sr, hop_length=hop_length,
|
113 |
+
x_axis='time', y_axis='mel', ax=axes[0, 1])
|
114 |
+
axes[0, 1].set_title('Mel Spectrogram')
|
115 |
+
|
116 |
+
# MFCC
|
117 |
+
librosa.display.specshow(features['mfcc'], sr=sr, x_axis='time', ax=axes[1, 0])
|
118 |
+
axes[1, 0].set_title('MFCC')
|
119 |
|
120 |
# Spectral features
|
121 |
+
times = librosa.frames_to_time(range(len(features['spectral_centroid'])), sr=sr, hop_length=hop_length)
|
122 |
+
axes[1, 1].plot(times, features['spectral_centroid'], label='Spectral Centroid')
|
123 |
+
axes[1, 1].plot(times, features['spectral_rolloff'], label='Spectral Rolloff')
|
124 |
+
axes[1, 1].set_title('Spectral Features')
|
125 |
+
axes[1, 1].set_xlabel('Time (s)')
|
126 |
+
axes[1, 1].legend()
|
127 |
+
|
128 |
+
plt.tight_layout()
|
129 |
+
|
130 |
+
# Save plot
|
131 |
+
plot_path = os.path.join(self.temp_dir, f"basic_features_{np.random.randint(10000)}.png")
|
132 |
+
plt.savefig(plot_path, dpi=150, bbox_inches='tight')
|
133 |
+
plt.close()
|
134 |
+
|
135 |
+
# Create summary text
|
136 |
+
summary = f"""
|
137 |
+
**Audio Summary:**
|
138 |
+
- Duration: {duration:.2f} seconds
|
139 |
+
- Sample Rate: {sr} Hz
|
140 |
+
- Estimated Tempo: {features['tempo']:.1f} BPM
|
141 |
+
- Number of Samples: {len(y):,}
|
142 |
+
|
143 |
+
**Feature Shapes:**
|
144 |
+
- MFCC: {features['mfcc'].shape}
|
145 |
+
- Spectral Centroid: {features['spectral_centroid'].shape}
|
146 |
+
- Spectral Rolloff: {features['spectral_rolloff'].shape}
|
147 |
+
- Zero Crossing Rate: {features['zero_crossing_rate'].shape}
|
148 |
+
"""
|
149 |
+
|
150 |
+
progress(1.0, desc="Analysis complete!")
|
151 |
+
return plot_path, summary, None
|
152 |
|
153 |
except Exception as e:
|
154 |
+
return None, None, f"Error processing audio: {str(e)}"
|
155 |
|
156 |
+
def extract_chroma_features(self, audio_path, sr=16000, progress=gr.Progress()):
|
157 |
+
"""Extract and visualize enhanced chroma features."""
|
158 |
+
if not audio_path or not os.path.exists(audio_path):
|
159 |
+
return None, "Invalid audio file"
|
160 |
|
161 |
try:
|
162 |
+
progress(0.1, desc="Loading audio...")
|
163 |
+
y, sr = librosa.load(audio_path, sr=sr)
|
|
|
164 |
|
165 |
+
# Limit to first 30 seconds for processing speed
|
166 |
+
max_duration = 30
|
167 |
+
if len(y) > sr * max_duration:
|
168 |
+
y = y[:sr * max_duration]
|
169 |
|
170 |
+
progress(0.3, desc="Computing chroma variants...")
|
|
|
|
|
171 |
|
172 |
+
# Original chroma
|
173 |
+
chroma_orig = librosa.feature.chroma_cqt(y=y, sr=sr)
|
174 |
|
175 |
+
# Harmonic-percussive separation
|
176 |
+
y_harm = librosa.effects.harmonic(y=y, margin=8)
|
177 |
+
chroma_harm = librosa.feature.chroma_cqt(y=y_harm, sr=sr)
|
178 |
|
179 |
+
progress(0.6, desc="Applying filters...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
# Non-local filtering
|
182 |
+
chroma_filter = np.minimum(chroma_harm,
|
183 |
+
librosa.decompose.nn_filter(chroma_harm,
|
184 |
+
aggregate=np.median,
|
185 |
+
metric='cosine'))
|
|
|
|
|
186 |
|
187 |
+
# Median filtering
|
188 |
+
chroma_smooth = scipy.ndimage.median_filter(chroma_filter, size=(1, 9))
|
|
|
189 |
|
190 |
+
# STFT-based chroma
|
191 |
+
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
# CENS features
|
194 |
+
chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr)
|
|
|
195 |
|
196 |
+
progress(0.8, desc="Creating visualizations...")
|
197 |
|
198 |
+
# Create comprehensive visualization
|
199 |
+
fig, axes = plt.subplots(3, 2, figsize=(15, 12))
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
# Original vs Harmonic
|
202 |
+
librosa.display.specshow(chroma_orig, y_axis='chroma', x_axis='time', ax=axes[0, 0])
|
203 |
+
axes[0, 0].set_title('Original Chroma (CQT)')
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
librosa.display.specshow(chroma_harm, y_axis='chroma', x_axis='time', ax=axes[0, 1])
|
206 |
+
axes[0, 1].set_title('Harmonic Chroma')
|
207 |
|
208 |
+
# Filtered vs Smooth
|
209 |
+
librosa.display.specshow(chroma_filter, y_axis='chroma', x_axis='time', ax=axes[1, 0])
|
210 |
+
axes[1, 0].set_title('Non-local Filtered')
|
|
|
211 |
|
212 |
+
librosa.display.specshow(chroma_smooth, y_axis='chroma', x_axis='time', ax=axes[1, 1])
|
213 |
+
axes[1, 1].set_title('Median Filtered')
|
214 |
|
215 |
+
# STFT vs CENS
|
216 |
+
librosa.display.specshow(chroma_stft, y_axis='chroma', x_axis='time', ax=axes[2, 0])
|
217 |
+
axes[2, 0].set_title('Chroma (STFT)')
|
218 |
|
219 |
+
librosa.display.specshow(chroma_cens, y_axis='chroma', x_axis='time', ax=axes[2, 1])
|
220 |
+
axes[2, 1].set_title('CENS Features')
|
221 |
|
222 |
+
plt.tight_layout()
|
223 |
+
|
224 |
+
# Save plot
|
225 |
+
plot_path = os.path.join(self.temp_dir, f"chroma_features_{np.random.randint(10000)}.png")
|
226 |
+
plt.savefig(plot_path, dpi=150, bbox_inches='tight')
|
227 |
+
plt.close()
|
228 |
+
|
229 |
+
progress(1.0, desc="Chroma analysis complete!")
|
230 |
+
return plot_path, None
|
231 |
|
232 |
except Exception as e:
|
233 |
+
return None, f"Error processing chroma features: {str(e)}"
|
234 |
|
235 |
+
def generate_patches(self, audio_path, sr=16000, patch_duration=5.0, hop_duration=1.0, progress=gr.Progress()):
|
236 |
+
"""Generate fixed-duration patches for transformer input."""
|
237 |
+
if not audio_path or not os.path.exists(audio_path):
|
238 |
+
return None, None, "Invalid audio file"
|
239 |
|
240 |
try:
|
241 |
+
progress(0.1, desc="Loading audio...")
|
242 |
+
y, sr = librosa.load(audio_path, sr=sr)
|
243 |
+
|
244 |
+
progress(0.3, desc="Computing mel spectrogram...")
|
245 |
+
hop_length = 512
|
246 |
+
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80)
|
247 |
+
S_dB = librosa.power_to_db(S_mel, ref=np.max)
|
248 |
+
|
249 |
+
progress(0.5, desc="Generating patches...")
|
250 |
+
|
251 |
+
# Convert time to frames
|
252 |
+
patch_frames = librosa.time_to_frames(patch_duration, sr=sr, hop_length=hop_length)
|
253 |
+
hop_frames = librosa.time_to_frames(hop_duration, sr=sr, hop_length=hop_length)
|
254 |
+
|
255 |
+
# Generate patches using librosa.util.frame
|
256 |
+
patches = librosa.util.frame(S_dB, frame_length=patch_frames, hop_length=hop_frames)
|
257 |
+
|
258 |
+
progress(0.8, desc="Creating visualizations...")
|
259 |
+
|
260 |
+
# Visualize patches
|
261 |
+
num_patches_to_show = min(6, patches.shape[-1])
|
262 |
+
fig, axes = plt.subplots(2, 3, figsize=(18, 8))
|
263 |
+
axes = axes.flatten()
|
264 |
+
|
265 |
+
for i in range(num_patches_to_show):
|
266 |
+
librosa.display.specshow(patches[..., i], y_axis='mel', x_axis='time',
|
267 |
+
ax=axes[i], sr=sr, hop_length=hop_length)
|
268 |
+
axes[i].set_title(f'Patch {i+1}')
|
269 |
+
|
270 |
+
# Hide unused subplots
|
271 |
+
for i in range(num_patches_to_show, len(axes)):
|
272 |
+
axes[i].set_visible(False)
|
273 |
+
|
274 |
+
plt.tight_layout()
|
275 |
+
|
276 |
+
# Save plot
|
277 |
+
plot_path = os.path.join(self.temp_dir, f"patches_{np.random.randint(10000)}.png")
|
278 |
+
plt.savefig(plot_path, dpi=150, bbox_inches='tight')
|
279 |
+
plt.close()
|
280 |
+
|
281 |
+
# Summary
|
282 |
+
summary = f"""
|
283 |
+
**Patch Generation Summary:**
|
284 |
+
- Total patches generated: {patches.shape[-1]}
|
285 |
+
- Patch duration: {patch_duration} seconds
|
286 |
+
- Hop duration: {hop_duration} seconds
|
287 |
+
- Patch shape (mels, time, patches): {patches.shape}
|
288 |
+
- Each patch covers {patch_frames} time frames
|
289 |
+
"""
|
290 |
+
|
291 |
+
progress(1.0, desc="Patch generation complete!")
|
292 |
+
return plot_path, summary, None
|
293 |
|
294 |
except Exception as e:
|
295 |
+
return None, None, f"Error generating patches: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
# Initialize analyzer
|
298 |
+
analyzer = AudioAnalyzer()
|
299 |
|
300 |
+
# Gradio interface functions
|
301 |
+
def process_youtube_url(url):
|
302 |
+
"""Process YouTube URL and return audio file."""
|
303 |
+
file_path, message = analyzer.download_youtube_audio(url)
|
304 |
+
if file_path:
|
305 |
+
return file_path, message, gr.update(visible=True)
|
306 |
+
else:
|
307 |
+
return None, message, gr.update(visible=False)
|
308 |
|
309 |
+
def analyze_audio_basic(audio_file):
|
310 |
+
"""Analyze audio file and return basic features."""
|
311 |
+
if audio_file is None:
|
312 |
+
return None, "Please upload an audio file or download from YouTube first."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
plot_path, summary, error = analyzer.extract_basic_features(audio_file)
|
315 |
+
if error:
|
316 |
+
return None, error
|
317 |
+
return plot_path, summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
+
def analyze_audio_chroma(audio_file):
|
320 |
+
"""Analyze audio file for chroma features."""
|
321 |
+
if audio_file is None:
|
322 |
+
return None, "Please upload an audio file or download from YouTube first."
|
323 |
|
324 |
+
plot_path, error = analyzer.extract_chroma_features(audio_file)
|
325 |
+
if error:
|
326 |
+
return None, error
|
327 |
+
return plot_path, "Chroma feature analysis complete! This shows different chroma extraction methods for harmonic analysis."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
def analyze_audio_patches(audio_file, patch_duration, hop_duration):
|
330 |
+
"""Generate transformer patches from audio."""
|
331 |
+
if audio_file is None:
|
332 |
+
return None, None, "Please upload an audio file or download from YouTube first."
|
|
|
|
|
|
|
333 |
|
334 |
+
plot_path, summary, error = analyzer.generate_patches(audio_file, patch_duration=patch_duration, hop_duration=hop_duration)
|
335 |
+
if error:
|
336 |
+
return None, None, error
|
337 |
+
return plot_path, summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
+
# Create Gradio interface
|
340 |
+
with gr.Blocks(title="🎵 Audio Analysis Suite", theme=gr.themes.Soft()) as app:
|
341 |
+
gr.Markdown("""
|
342 |
+
# 🎵 Audio Analysis Suite
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
+
A comprehensive tool for audio feature extraction and analysis. Upload an audio file or download from YouTube to get started!
|
|
|
|
|
|
|
|
|
345 |
|
346 |
+
**Features:**
|
347 |
+
- 📊 **Basic Features**: Waveform, Mel Spectrogram, MFCC, Spectral Analysis, Tempo Detection
|
348 |
+
- 🎼 **Chroma Features**: Advanced harmonic content analysis with multiple extraction methods
|
349 |
+
- 🧩 **Transformer Patches**: Generate fixed-duration patches for deep learning applications
|
350 |
+
""")
|
351 |
+
|
352 |
+
with gr.Row():
|
353 |
+
with gr.Column(scale=1):
|
354 |
+
gr.Markdown("### 📁 Audio Input")
|
355 |
+
|
356 |
+
# YouTube downloader
|
357 |
+
with gr.Group():
|
358 |
+
gr.Markdown("**Download from YouTube:**")
|
359 |
+
youtube_url = gr.Textbox(
|
360 |
+
label="YouTube URL",
|
361 |
+
placeholder="https://www.youtube.com/watch?v=...",
|
362 |
+
info="Paste a YouTube video URL to extract audio"
|
363 |
+
)
|
364 |
+
download_btn = gr.Button("📥 Download Audio", variant="primary")
|
365 |
+
download_status = gr.Textbox(label="Download Status", interactive=False)
|
366 |
+
|
367 |
+
# File upload
|
368 |
+
with gr.Group():
|
369 |
+
gr.Markdown("**Or upload audio file:**")
|
370 |
+
audio_file = gr.Audio(
|
371 |
+
label="Upload Audio File",
|
372 |
+
type="filepath",
|
373 |
+
info="Supported formats: MP3, WAV, FLAC, etc."
|
374 |
+
)
|
375 |
|
376 |
+
with gr.Column(scale=2):
|
377 |
+
gr.Markdown("### 🔍 Analysis Results")
|
378 |
+
|
379 |
+
with gr.Tabs():
|
380 |
+
with gr.Tab("📊 Basic Features"):
|
381 |
+
basic_plot = gr.Image(label="Feature Visualizations")
|
382 |
+
basic_summary = gr.Markdown()
|
383 |
+
basic_analyze_btn = gr.Button("🔍 Analyze Basic Features", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
+
with gr.Tab("🎼 Chroma Features"):
|
386 |
+
chroma_plot = gr.Image(label="Chroma Visualizations")
|
387 |
+
chroma_summary = gr.Markdown()
|
388 |
+
chroma_analyze_btn = gr.Button("🎼 Analyze Chroma Features", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
+
with gr.Tab("🧩 Transformer Patches"):
|
391 |
+
with gr.Row():
|
392 |
+
patch_duration = gr.Slider(
|
393 |
+
label="Patch Duration (seconds)",
|
394 |
+
minimum=1.0, maximum=10.0, value=5.0, step=0.5,
|
395 |
+
info="Duration of each patch"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
)
|
397 |
+
hop_duration = gr.Slider(
|
398 |
+
label="Hop Duration (seconds)",
|
399 |
+
minimum=0.1, maximum=5.0, value=1.0, step=0.1,
|
400 |
+
info="Time between patch starts"
|
401 |
)
|
|
|
402 |
|
403 |
+
patches_plot = gr.Image(label="Generated Patches")
|
404 |
+
patches_summary = gr.Markdown()
|
405 |
+
patches_analyze_btn = gr.Button("🧩 Generate Patches", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
+
gr.Markdown("""
|
408 |
+
### ℹ️ Usage Tips
|
409 |
+
- **Processing is limited to 60 seconds** for basic features and 30 seconds for chroma analysis to ensure fast response times
|
410 |
+
- **YouTube downloads** respect platform terms of service
|
411 |
+
- **Visualizations** are high-quality and suitable for research/educational use
|
412 |
+
- **All processing** is done locally in your browser session
|
413 |
+
""")
|
414 |
+
|
415 |
+
# Event handlers
|
416 |
+
download_btn.click(
|
417 |
+
process_youtube_url,
|
418 |
+
inputs=[youtube_url],
|
419 |
+
outputs=[audio_file, download_status, basic_analyze_btn]
|
420 |
+
)
|
421 |
+
|
422 |
+
basic_analyze_btn.click(
|
423 |
+
analyze_audio_basic,
|
424 |
+
inputs=[audio_file],
|
425 |
+
outputs=[basic_plot, basic_summary]
|
426 |
+
)
|
427 |
+
|
428 |
+
chroma_analyze_btn.click(
|
429 |
+
analyze_audio_chroma,
|
430 |
+
inputs=[audio_file],
|
431 |
+
outputs=[chroma_plot, chroma_summary]
|
432 |
+
)
|
433 |
+
|
434 |
+
patches_analyze_btn.click(
|
435 |
+
analyze_audio_patches,
|
436 |
+
inputs=[audio_file, patch_duration, hop_duration],
|
437 |
+
outputs=[patches_plot, patches_summary]
|
438 |
+
)
|
439 |
+
|
440 |
+
# Auto-analyze when file is uploaded
|
441 |
+
audio_file.change(
|
442 |
+
analyze_audio_basic,
|
443 |
+
inputs=[audio_file],
|
444 |
+
outputs=[basic_plot, basic_summary]
|
445 |
+
)
|
446 |
|
447 |
if __name__ == "__main__":
|
448 |
+
app.launch()
|
449 |
+
|
450 |
+
|