Update app.py
Browse files
app.py
CHANGED
@@ -1,408 +1,205 @@
|
|
1 |
import gradio as gr
|
2 |
-
import subprocess
|
3 |
-
import os
|
4 |
-
import tempfile
|
5 |
-
import librosa
|
6 |
-
import librosa.display
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import numpy as np
|
9 |
-
import scipy.ndimage
|
10 |
from pathlib import Path
|
|
|
11 |
import logging
|
12 |
-
import
|
|
|
|
|
|
|
13 |
import shutil
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
if
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
'spectral_centroid': librosa.feature.spectral_centroid(y=y, sr=sr)[0],
|
126 |
-
'spectral_rolloff': librosa.feature.spectral_rolloff(y=y, sr=sr)[0],
|
127 |
-
'zero_crossing_rate': librosa.feature.zero_crossing_rate(y)[0]
|
128 |
-
}
|
129 |
-
|
130 |
-
progress(0.5, desc="Computing mel spectrogram...")
|
131 |
-
hop_length = 512
|
132 |
-
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80)
|
133 |
-
S_dB = librosa.power_to_db(S_mel, ref=np.max)
|
134 |
-
|
135 |
-
progress(0.8, desc="Creating visualizations...")
|
136 |
-
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
|
137 |
-
|
138 |
-
time_axis = np.linspace(0, duration, len(y))
|
139 |
-
axes[0, 0].plot(time_axis, y)
|
140 |
-
axes[0, 0].set_title('Waveform')
|
141 |
-
axes[0, 0].set_xlabel('Time (s)')
|
142 |
-
axes[0, 0].set_ylabel('Amplitude')
|
143 |
-
|
144 |
-
librosa.display.specshow(S_dB, sr=sr, hop_length=hop_length,
|
145 |
-
x_axis='time', y_axis='mel', ax=axes[0, 1])
|
146 |
-
axes[0, 1].set_title('Mel Spectrogram')
|
147 |
-
|
148 |
-
librosa.display.specshow(features['mfcc'], sr=sr, x_axis='time', ax=axes[1, 0])
|
149 |
-
axes[1, 0].set_title('MFCC')
|
150 |
-
|
151 |
-
times = librosa.frames_to_time(range(len(features['spectral_centroid'])), sr=sr, hop_length=hop_length)
|
152 |
-
axes[1, 1].plot(times, features['spectral_centroid'], label='Spectral Centroid')
|
153 |
-
axes[1, 1].plot(times, features['spectral_rolloff'], label='Spectral Rolloff')
|
154 |
-
axes[1, 1].set_title('Spectral Features')
|
155 |
-
axes[1, 1].set_xlabel('Time (s)')
|
156 |
-
axes[1, 1].legend()
|
157 |
-
|
158 |
-
plt.tight_layout()
|
159 |
-
plot_path = self.save_plot(fig, "basic_features")
|
160 |
-
if not plot_path:
|
161 |
-
return None, None, "Failed to save feature visualizations"
|
162 |
-
|
163 |
-
# Validate feature shapes
|
164 |
-
for key in ['mfcc', 'spectral_centroid', 'spectral_rolloff', 'zero_crossing_rate']:
|
165 |
-
if not isinstance(features[key].shape, tuple):
|
166 |
-
logger.error(f"Invalid shape for {key}: {features[key].shape}")
|
167 |
-
return None, None, f"Invalid feature shape for {key}"
|
168 |
-
|
169 |
-
summary = f"""
|
170 |
-
**Audio Summary:**
|
171 |
-
- Duration: {duration:.2f} seconds
|
172 |
-
- Sample Rate: {sr} Hz
|
173 |
-
- Estimated Tempo: {features['tempo']:.1f} BPM
|
174 |
-
- Number of Samples: {features['samples']:,}
|
175 |
-
|
176 |
-
**Feature Shapes:**
|
177 |
-
- MFCC: {features['mfcc'].shape}
|
178 |
-
- Spectral Centroid: {features['spectral_centroid'].shape}
|
179 |
-
- Spectral Rolloff: {features['spectral_rolloff'].shape}
|
180 |
-
- Zero Crossing Rate: {features['zero_crossing_rate'].shape}
|
181 |
-
"""
|
182 |
-
|
183 |
-
progress(1.0, desc="Analysis complete!")
|
184 |
-
return plot_path, summary, None
|
185 |
-
|
186 |
-
except Exception as e:
|
187 |
-
logger.error(f"Error processing audio: {str(e)}")
|
188 |
-
return None, None, f"Error processing audio: {str(e)}"
|
189 |
-
|
190 |
-
def extract_chroma_features(self, audio_path: str, sr: int = 16000, max_duration: float = 30.0,
|
191 |
-
progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]:
|
192 |
-
"""Extract and visualize enhanced chroma features."""
|
193 |
-
if not audio_path or not Path(audio_path).exists():
|
194 |
-
return None, None, "Invalid or missing audio file"
|
195 |
-
|
196 |
-
try:
|
197 |
-
progress(0.1, desc="Loading audio...")
|
198 |
-
y, sr = librosa.load(audio_path, sr=sr)
|
199 |
-
if len(y) > sr * max_duration:
|
200 |
-
y = y[:int(sr * max_duration)]
|
201 |
-
|
202 |
-
progress(0.3, desc="Computing chroma variants...")
|
203 |
-
chroma_orig = librosa.feature.chroma_cqt(y=y, sr=sr)
|
204 |
-
y_harm = librosa.effects.harmonic(y=y, margin=8)
|
205 |
-
chroma_harm = librosa.feature.chroma_cqt(y=y_harm, sr=sr)
|
206 |
-
chroma_filter = np.minimum(chroma_harm,
|
207 |
-
librosa.decompose.nn_filter(chroma_harm,
|
208 |
-
aggregate=np.median,
|
209 |
-
metric='cosine'))
|
210 |
-
chroma_smooth = scipy.ndimage.median_filter(chroma_filter, size=(1, 9))
|
211 |
-
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
|
212 |
-
chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr)
|
213 |
-
|
214 |
-
progress(0.8, desc="Creating visualizations...")
|
215 |
-
fig, axes = plt.subplots(3, 2, figsize=(15, 12))
|
216 |
-
axes = axes.flatten()
|
217 |
-
|
218 |
-
for i, (chroma, title) in enumerate([
|
219 |
-
(chroma_orig, 'Original Chroma (CQT)'),
|
220 |
-
(chroma_harm, 'Harmonic Chroma'),
|
221 |
-
(chroma_filter, 'Non-local Filtered'),
|
222 |
-
(chroma_smooth, 'Median Filtered'),
|
223 |
-
(chroma_stft, 'Chroma (STFT)'),
|
224 |
-
(chroma_cens, 'CENS Features')
|
225 |
-
]):
|
226 |
-
librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=axes[i])
|
227 |
-
axes[i].set_title(title)
|
228 |
-
|
229 |
-
plt.tight_layout()
|
230 |
-
plot_path = self.save_plot(fig, "chroma_features")
|
231 |
-
if not plot_path:
|
232 |
-
return None, None, "Failed to save chroma visualizations"
|
233 |
-
|
234 |
-
summary = "Chroma feature analysis complete! Visualizations show different chroma extraction methods for harmonic analysis."
|
235 |
-
progress(1.0, desc="Chroma analysis complete!")
|
236 |
-
return plot_path, summary, None
|
237 |
-
|
238 |
-
except Exception as e:
|
239 |
-
logger.error(f"Error processing chroma features: {str(e)}")
|
240 |
-
return None, None, f"Error processing chroma features: {str(e)}"
|
241 |
-
|
242 |
-
def generate_patches(self, audio_path: str, sr: int = 16000, patch_duration: float = 5.0,
|
243 |
-
hop_duration: float = 1.0, progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]:
|
244 |
-
"""Generate fixed-duration patches for transformer input."""
|
245 |
-
if not audio_path or not Path(audio_path).exists():
|
246 |
-
return None, None, "Invalid or missing audio file"
|
247 |
-
|
248 |
try:
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
hop_length = 512
|
254 |
-
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80)
|
255 |
-
S_dB = librosa.power_to_db(S_mel, ref=np.max)
|
256 |
-
|
257 |
-
progress(0.5, desc="Generating patches...")
|
258 |
-
patch_frames = librosa.time_to_frames(patch_duration, sr=sr, hop_length=hop_length)
|
259 |
-
hop_frames = librosa.time_to_frames(hop_duration, sr=sr, hop_length=hop_length)
|
260 |
-
patches = librosa.util.frame(S_dB, frame_length=patch_frames, hop_length=hop_frames)
|
261 |
-
|
262 |
-
progress(0.8, desc="Creating visualizations...")
|
263 |
-
num_patches_to_show = min(6, patches.shape[-1])
|
264 |
-
fig, axes = plt.subplots(2, 3, figsize=(18, 8))
|
265 |
-
axes = axes.flatten()
|
266 |
-
|
267 |
-
for i in range(num_patches_to_show):
|
268 |
-
librosa.display.specshow(patches[..., i], y_axis='mel', x_axis='time',
|
269 |
-
ax=axes[i], sr=sr, hop_length=hop_length)
|
270 |
-
axes[i].set_title(f'Patch {i+1}')
|
271 |
-
|
272 |
-
for i in range(num_patches_to_show, len(axes)):
|
273 |
-
axes[i].set_visible(False)
|
274 |
-
|
275 |
-
plt.tight_layout()
|
276 |
-
plot_path = self.save_plot(fig, "patches")
|
277 |
-
if not plot_path:
|
278 |
-
return None, None, "Failed to save patch visualizations"
|
279 |
-
|
280 |
-
summary = f"""
|
281 |
-
**Patch Generation Summary:**
|
282 |
-
- Total patches generated: {patches.shape[-1]}
|
283 |
-
- Patch duration: {patch_duration:.1f} seconds
|
284 |
-
- Hop duration: {hop_duration:.1f} seconds
|
285 |
-
- Patch shape (mels, time, patches): {patches.shape}
|
286 |
-
- Each patch covers {patch_frames} time frames
|
287 |
-
"""
|
288 |
-
|
289 |
-
progress(1.0, desc="Patch generation complete!")
|
290 |
-
return plot_path, summary, None
|
291 |
-
|
292 |
except Exception as e:
|
293 |
-
|
294 |
-
return None, None, f"Error generating patches: {str(e)}"
|
295 |
-
|
296 |
-
def create_gradio_interface() -> gr.Blocks:
|
297 |
-
"""Create a modular Gradio interface for audio analysis."""
|
298 |
-
analyzer = AudioAnalyzer()
|
299 |
-
|
300 |
-
with gr.Blocks(title="🎵 Audio Analysis Suite", theme=gr.themes.Soft()) as demo:
|
301 |
-
gr.Markdown("""
|
302 |
-
# 🎵 Audio Analysis Suite
|
303 |
-
|
304 |
-
Analyze audio from YouTube videos or uploaded files. Extract features or generate transformer patches for deep learning applications.
|
305 |
-
|
306 |
-
**Features:**
|
307 |
-
- 📊 **Basic Features**: Waveform, Mel Spectrogram, MFCC, Spectral Analysis, Tempo Detection
|
308 |
-
- 🎼 **Chroma Features**: Harmonic content analysis with multiple extraction methods
|
309 |
-
- 🧩 **Transformer Patches**: Fixed-duration patches for deep learning
|
310 |
-
|
311 |
-
**Requirements**: Dependencies are automatically installed in Hugging Face Spaces via `requirements.txt`.
|
312 |
-
""")
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
chroma_plot = gr.Image(label="Chroma Visualizations")
|
343 |
-
chroma_summary = gr.Markdown(label="Chroma Summary")
|
344 |
-
chroma_btn = gr.Button("🎼 Analyze Chroma Features", variant="secondary")
|
345 |
-
|
346 |
-
with gr.Tab("🧩 Transformer Patches"):
|
347 |
-
with gr.Row():
|
348 |
-
patch_duration = gr.Slider(
|
349 |
-
label="Patch Duration (seconds)",
|
350 |
-
minimum=1.0, maximum=10.0, value=5.0, step=0.5,
|
351 |
-
)
|
352 |
-
hop_duration = gr.Slider(
|
353 |
-
label="Hop Duration (seconds)",
|
354 |
-
minimum=0.1, maximum=5.0, value=1.0, step=0.1,
|
355 |
-
)
|
356 |
-
patches_plot = gr.Image(label="Generated Patches")
|
357 |
-
patches_summary = gr.Markdown(label="Patch Summary")
|
358 |
-
patches_btn = gr.Button("🧩 Generate Patches", variant="secondary")
|
359 |
-
|
360 |
-
error_output = gr.Textbox(label="Error Messages", interactive=False)
|
361 |
-
|
362 |
-
gr.Markdown("""
|
363 |
-
### ℹ️ Usage Tips
|
364 |
-
- **Processing Limits**: 60s for basic features, 30s for chroma features for fast response
|
365 |
-
- **YouTube Downloads**: Ensure URLs are valid and respect YouTube's terms of service
|
366 |
-
- **Visualizations**: High-quality, suitable for research and education
|
367 |
-
- **Storage**: Temporary files are cleaned up when the interface closes
|
368 |
-
- **Support**: For issues, check the [GitHub repository](https://github.com/your-repo)
|
369 |
-
""")
|
370 |
-
|
371 |
-
# Event handlers
|
372 |
-
download_btn.click(
|
373 |
-
fn=analyzer.download_youtube_audio,
|
374 |
-
inputs=[youtube_url],
|
375 |
-
outputs=[audio_file, download_status]
|
376 |
-
)
|
377 |
-
|
378 |
-
basic_btn.click(
|
379 |
-
fn=analyzer.extract_basic_features,
|
380 |
-
inputs=[audio_file],
|
381 |
-
outputs=[basic_plot, basic_summary, error_output]
|
382 |
-
)
|
383 |
-
|
384 |
-
chroma_btn.click(
|
385 |
-
fn=analyzer.extract_chroma_features,
|
386 |
-
inputs=[audio_file],
|
387 |
-
outputs=[chroma_plot, chroma_summary, error_output]
|
388 |
-
)
|
389 |
-
|
390 |
-
patches_btn.click(
|
391 |
-
fn=analyzer.generate_patches,
|
392 |
-
inputs=[audio_file, patch_duration, hop_duration],
|
393 |
-
outputs=[patches_plot, patches_summary, error_output]
|
394 |
-
)
|
395 |
-
|
396 |
-
audio_file.change(
|
397 |
-
fn=analyzer.extract_basic_features,
|
398 |
-
inputs=[audio_file],
|
399 |
-
outputs=[basic_plot, basic_summary, error_output]
|
400 |
-
)
|
401 |
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
if __name__ == "__main__":
|
407 |
-
|
408 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from pathlib import Path
|
3 |
+
import yt_dlp
|
4 |
import logging
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import ffmpeg
|
9 |
import shutil
|
10 |
+
import tempfile
|
11 |
+
import time
|
12 |
+
|
13 |
+
# Set up logging for debugging
|
14 |
+
logging.basicConfig(level=logging.DEBUG)
|
15 |
+
|
16 |
+
def analyze_audio(youtube_url, input_text, input_image=None, slider_value=50, checkbox_value=False):
|
17 |
+
"""
|
18 |
+
Downloads YouTube audio, performs automatic audio feature analysis with librosa, and processes inputs.
|
19 |
+
Automatically handles file and folder management.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
youtube_url (str): YouTube video URL (optional).
|
23 |
+
input_text (str): Text input for processing.
|
24 |
+
input_image (PIL.Image, optional): Image input for processing.
|
25 |
+
slider_value (float): Numerical parameter (e.g., analysis threshold).
|
26 |
+
checkbox_value (bool): Toggle for enhanced analysis.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
tuple: (processed_text, output_image_display, output_audio, extra_info)
|
30 |
+
"""
|
31 |
+
# Create a unique temporary directory for this run
|
32 |
+
temp_dir = Path(tempfile.mkdtemp(prefix="audio_analysis_"))
|
33 |
+
output_dir = temp_dir / "downloaded_media"
|
34 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
35 |
+
logging.debug(f"Created temporary directory: {temp_dir}, output directory: {output_dir}")
|
36 |
+
|
37 |
+
try:
|
38 |
+
# Initialize outputs
|
39 |
+
processed_text = f"Processed: '{input_text}'."
|
40 |
+
output_image_display = input_image
|
41 |
+
output_audio = None
|
42 |
+
extra_info = f"Threshold: {slider_value/100:.2f}"
|
43 |
+
|
44 |
+
# Handle YouTube download if URL is provided
|
45 |
+
if youtube_url:
|
46 |
+
try:
|
47 |
+
# Validate YouTube URL
|
48 |
+
if not youtube_url.startswith(("https://www.youtube.com/", "https://youtu.be/")):
|
49 |
+
return "Error: Invalid YouTube URL", None, None, "Processing failed."
|
50 |
+
|
51 |
+
# YouTube download options (audio only)
|
52 |
+
ydl_opts = {
|
53 |
+
'format': 'bestaudio/best',
|
54 |
+
'outtmpl': str(output_dir / '%(title)s.%(ext)s'),
|
55 |
+
'postprocessors': [{
|
56 |
+
'key': 'FFmpegExtractAudio',
|
57 |
+
'preferredcodec': 'mp3',
|
58 |
+
'preferredquality': '192',
|
59 |
+
}],
|
60 |
+
'restrictfilenames': True,
|
61 |
+
'noplaylist': True,
|
62 |
+
}
|
63 |
+
|
64 |
+
# Download audio
|
65 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
66 |
+
info = ydl.extract_info(youtube_url, download=True)
|
67 |
+
audio_file = output_dir / f"{info['title']}.mp3"
|
68 |
+
logging.debug(f"Downloaded audio: {audio_file}")
|
69 |
+
output_audio = str(audio_file)
|
70 |
+
|
71 |
+
# Perform automatic audio feature analysis with librosa
|
72 |
+
y, sr = librosa.load(audio_file)
|
73 |
+
hop_length = 512 # Valid hop_length to fix "Invalid hop_length: 0" error
|
74 |
+
logging.debug(f"Using hop_length: {hop_length}")
|
75 |
+
|
76 |
+
# Extract features
|
77 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, hop_length=hop_length)
|
78 |
+
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr, hop_length=hop_length)
|
79 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=sr, hop_length=hop_length)
|
80 |
+
|
81 |
+
# Aggregate features
|
82 |
+
mfcc_mean = np.mean(mfcc, axis=1).tolist()[:3] # Mean of first 3 MFCC coefficients
|
83 |
+
spectral_centroid_mean = np.mean(spectral_centroid)
|
84 |
+
features_summary = (
|
85 |
+
f"Audio Features: MFCC (mean of first 3 coeffs): {mfcc_mean}, "
|
86 |
+
f"Spectral Centroid: {spectral_centroid_mean:.2f} Hz, "
|
87 |
+
f"Tempo: {tempo:.2f} BPM"
|
88 |
+
)
|
89 |
+
|
90 |
+
processed_text += f" {features_summary}."
|
91 |
+
extra_info += f", Audio: {audio_file.name}"
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
logging.error(f"YouTube download or audio processing error: {str(e)}")
|
95 |
+
processed_text += f" Error processing YouTube audio: {str(e)}."
|
96 |
+
|
97 |
+
# Handle image processing if provided
|
98 |
+
if input_image is not None:
|
99 |
+
from PIL import ImageEnhance
|
100 |
+
enhancer = ImageEnhance.Brightness(input_image)
|
101 |
+
output_image_display = enhancer.enhance(1.5)
|
102 |
+
processed_text += " Image processed (brightened)."
|
103 |
+
else:
|
104 |
+
processed_text += " No image provided."
|
105 |
+
|
106 |
+
# Incorporate slider and checkbox
|
107 |
+
processed_text += f" Slider: {slider_value}, Enhanced Analysis: {checkbox_value}."
|
108 |
+
if checkbox_value:
|
109 |
+
processed_text += " Enhanced analysis enabled."
|
110 |
+
if youtube_url and slider_value > 50:
|
111 |
+
processed_text += f" High threshold ({slider_value}) applied for deeper analysis."
|
112 |
+
|
113 |
+
return processed_text, output_image_display, output_audio, extra_info
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
logging.error(f"Error in analyze_audio: {str(e)}")
|
117 |
+
return f"Error: {str(e)}", None, None, "Processing failed."
|
118 |
+
|
119 |
+
finally:
|
120 |
+
# Clean up temporary directory after a delay to ensure file access
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
try:
|
122 |
+
time.sleep(1) # Brief delay to ensure Gradio can serve the audio file
|
123 |
+
if temp_dir.exists():
|
124 |
+
shutil.rmtree(temp_dir)
|
125 |
+
logging.debug(f"Cleaned up temporary directory: {temp_dir}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
except Exception as e:
|
127 |
+
logging.error(f"Error cleaning up temporary directory: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
# Define input components
|
130 |
+
input_youtube_url = gr.Textbox(
|
131 |
+
label="YouTube Video URL",
|
132 |
+
placeholder="e.g., https://www.youtube.com/watch?v=dQw4w9WgXcQ",
|
133 |
+
info="Optional: Enter a YouTube URL to download and analyze audio."
|
134 |
+
)
|
135 |
+
input_text_component = gr.Textbox(
|
136 |
+
label="Input Text",
|
137 |
+
placeholder="e.g., Analyze this audio track",
|
138 |
+
info="Type a description or query for processing."
|
139 |
+
)
|
140 |
+
input_image_component = gr.Image(
|
141 |
+
type="pil",
|
142 |
+
label="Upload Image (Optional)",
|
143 |
+
sources=["upload", "webcam", "clipboard"]
|
144 |
+
)
|
145 |
+
input_slider_component = gr.Slider(
|
146 |
+
minimum=0,
|
147 |
+
maximum=100,
|
148 |
+
value=50,
|
149 |
+
step=1,
|
150 |
+
label="Analysis Threshold",
|
151 |
+
info="Adjusts sensitivity of audio feature analysis."
|
152 |
+
)
|
153 |
+
input_checkbox_component = gr.Checkbox(
|
154 |
+
label="Enable Enhanced Analysis",
|
155 |
+
info="Toggle for deeper audio feature extraction."
|
156 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
# Define output components
|
159 |
+
output_text_component = gr.Textbox(
|
160 |
+
label="Analysis Results",
|
161 |
+
info="Text results including audio feature analysis."
|
162 |
+
)
|
163 |
+
output_image_component = gr.Image(
|
164 |
+
label="Processed Image (if any)",
|
165 |
+
info="Processed image output (if provided)."
|
166 |
+
)
|
167 |
+
output_audio_component = gr.Audio(
|
168 |
+
label="Downloaded Audio",
|
169 |
+
type="filepath",
|
170 |
+
info="Audio downloaded from YouTube."
|
171 |
+
)
|
172 |
+
output_label_component = gr.Label(
|
173 |
+
label="Analysis Summary",
|
174 |
+
info="Feature analysis details and processing info."
|
175 |
+
)
|
176 |
|
177 |
+
# Create the Gradio interface
|
178 |
+
iface = gr.Interface(
|
179 |
+
fn=analyze_audio,
|
180 |
+
inputs=[
|
181 |
+
input_youtube_url,
|
182 |
+
input_text_component,
|
183 |
+
input_image_component,
|
184 |
+
input_slider_component,
|
185 |
+
input_checkbox_component
|
186 |
+
],
|
187 |
+
outputs=[
|
188 |
+
output_text_component,
|
189 |
+
output_image_component,
|
190 |
+
output_audio_component,
|
191 |
+
output_label_component
|
192 |
+
],
|
193 |
+
title="YouTube Audio Feature Analysis",
|
194 |
+
description="Download YouTube audio, analyze features with librosa, and process text/image inputs. Customize with slider and checkbox.",
|
195 |
+
examples=[
|
196 |
+
["https://www.youtube.com/watch?v=dQw4w9WgXcQ", "Analyze this track", None, 75, True],
|
197 |
+
[None, "Describe a music track", None, 30, False],
|
198 |
+
["https://www.youtube.com/watch?v=9bZkp7q19f0", "Extract audio features", None, 60, True]
|
199 |
+
],
|
200 |
+
allow_flagging="never",
|
201 |
+
theme=gr.themes.Soft()
|
202 |
+
)
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
+
iface.launch()
|
|