Spaces:
Sleeping
Sleeping
import gradio as gr | |
import google.generativeai as genai | |
from transformers import pipeline | |
import json | |
from ppt_parser import transfer_to_structure # updated and working | |
# β Your Google Gemini API Key | |
GOOGLE_API_KEY = "AIzaSyA8fWpwJE21zxpuN8Fi8Qx9-iwx3d_AZiw" | |
genai.configure(api_key=GOOGLE_API_KEY) | |
# β Load Models | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
gemini_model = genai.GenerativeModel("models/gemini-1.5-flash") | |
# β Global variable to hold extracted text | |
extracted_text = "" | |
# β Flatten extracted JSON into plain text | |
def extract_text_from_pptx_json(parsed_json: dict) -> str: | |
extracted_text = "" | |
for slide_key, slide in parsed_json.items(): | |
for shape_key, shape in slide.items(): | |
if shape.get('type') == 'group': | |
group = shape.get('group_content', {}) | |
for _, group_shape in group.items(): | |
if group_shape.get('type') == 'text': | |
for para_key, para in group_shape.items(): | |
if para_key.startswith("paragraph_"): | |
extracted_text += para.get("text", "") + "\n" | |
elif shape.get('type') == 'text': | |
for para_key, para in shape.items(): | |
if para_key.startswith("paragraph_"): | |
extracted_text += para.get("text", "") + "\n" | |
return extracted_text.strip() | |
# β Main file handler | |
def handle_pptx_upload(pptx_file): | |
global extracted_text | |
tmp_path = pptx_file.name # Fix for NamedString error on Spaces | |
parsed_json_str, _ = transfer_to_structure(tmp_path, "images") | |
parsed_json = json.loads(parsed_json_str) | |
extracted_text = extract_text_from_pptx_json(parsed_json) | |
return extracted_text or "No readable text found in slides." | |
# β Summary generator | |
def summarize_text(): | |
global extracted_text | |
if not extracted_text: | |
return "Please upload and extract text from a PPTX file first." | |
summary = summarizer(extracted_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] | |
return summary | |
# β Gemini-powered Q&A | |
def clarify_concept(question): | |
global extracted_text | |
if not extracted_text: | |
return "Please upload and extract text from a PPTX file first." | |
prompt = f"Context:\n{extracted_text}\n\nQuestion: {question}" | |
response = gemini_model.generate_content(prompt) | |
return response.text if response else "No response from Gemini." | |
# β Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## π§ AI-Powered Study Assistant for PowerPoint Lectures") | |
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"]) # Fix mobile upload | |
extract_btn = gr.Button("π Extract & Summarize") | |
extracted_output = gr.Textbox(label="π Extracted Text", lines=10, interactive=False) | |
summary_output = gr.Textbox(label="π Summary", interactive=False) | |
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output]) | |
extract_btn.click(summarize_text, outputs=[summary_output]) | |
question = gr.Textbox(label="β Ask a Question") | |
ask_btn = gr.Button("π¬ Ask Gemini") | |
ai_answer = gr.Textbox(label="π€ Gemini Answer", lines=4) | |
ask_btn.click(clarify_concept, inputs=[question], outputs=[ai_answer]) | |
# β Launch app (without share=True for Spaces) | |
if __name__ == "__main__": | |
demo.launch() |