Spaces:
Sleeping
Sleeping
File size: 1,701 Bytes
587fb3d 8752417 587fb3d 8752417 587fb3d 8752417 587fb3d 8752417 587fb3d 8752417 587fb3d 8752417 587fb3d 8752417 587fb3d 8752417 587fb3d 8752417 587fb3d 8752417 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import PyPDF2
import torch
st.set_page_config(page_title="Perplexity-style Q&A (Mistral)", layout="wide")
st.title("🧠 Perplexity-style AI Study Assistant using Mistral 7B")
# Load Mistral model and tokenizer
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
torch_dtype=torch.float16,
device_map="auto"
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
return pipe
textgen = load_model()
# Extract text from uploaded PDF
def extract_text_from_pdf(file):
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() + "\n"
return text.strip()
# UI Layout
query = st.text_input("Ask a question or enter a topic:")
uploaded_file = st.file_uploader("Or upload a PDF to use as context:", type=["pdf"])
context = ""
if uploaded_file:
context = extract_text_from_pdf(uploaded_file)
st.text_area("📄 Extracted PDF Text", context, height=200)
if st.button("Generate Answer"):
with st.spinner("Generating answer with Mistral 7B..."):
prompt = query
if context:
prompt = f"[INST] Use the following context to answer the question:\n\n{context}\n\nQuestion: {query} [/INST]"
else:
prompt = f"[INST] {query} [/INST]"
output = textgen(prompt)[0]["generated_text"]
st.success("Answer:")
st.write(output.replace(prompt, "").strip()) |