Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import PyPDF2 | |
import torch | |
st.set_page_config(page_title="Perplexity Clone (Gemma)", layout="wide") | |
st.title("📚 Perplexity-Style AI Study Assistant using Gemma") | |
# Load Gemma model and tokenizer | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it") | |
model = AutoModelForCausalLM.from_pretrained( | |
"google/gemma-7b-it", | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512) | |
return pipe | |
textgen = load_model() | |
# Extract text from uploaded PDF | |
def extract_text_from_pdf(file): | |
reader = PyPDF2.PdfReader(file) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() + "\n" | |
return text.strip() | |
# UI Layout | |
query = st.text_input("Ask a question or type a query:") | |
uploaded_file = st.file_uploader("Or upload a PDF to analyze its content:", type=["pdf"]) | |
context = "" | |
if uploaded_file: | |
context = extract_text_from_pdf(uploaded_file) | |
st.text_area("Extracted Content", context, height=200) | |
if st.button("Generate Answer"): | |
with st.spinner("Generating with Gemma..."): | |
prompt = query | |
if context: | |
prompt = f"Context:\n{context}\n\nQuestion: {query}" | |
output = textgen(prompt)[0]["generated_text"] | |
st.success("Answer:") | |
st.write(output) |