Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,45 +3,228 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
3 |
import PyPDF2
|
4 |
import torch
|
5 |
import os
|
|
|
|
|
|
|
6 |
|
7 |
-
st.set_page_config(page_title="
|
8 |
-
st.title("π§ AI Study Assistant using Mistral 7B
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
@st.cache_resource
|
14 |
-
def load_model():
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def extract_text_from_pdf(file):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
st.
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import PyPDF2
|
4 |
import torch
|
5 |
import os
|
6 |
+
from huggingface_hub import login
|
7 |
+
import warnings
|
8 |
+
warnings.filterwarnings("ignore")
|
9 |
|
10 |
+
st.set_page_config(page_title="AI Study Assistant - Mistral 7B", layout="wide")
|
11 |
+
st.title("π§ AI Study Assistant using Mistral 7B")
|
12 |
|
13 |
+
# Enhanced token validation and authentication
|
14 |
+
def validate_hf_token():
|
15 |
+
"""Validate and authenticate Hugging Face token"""
|
16 |
+
hf_token = None
|
17 |
+
|
18 |
+
# Try multiple sources for the token
|
19 |
+
token_sources = [
|
20 |
+
("Environment Variable", os.getenv("HF_TOKEN")),
|
21 |
+
("Streamlit Secrets", st.secrets.get("HF_TOKEN", None) if hasattr(st, 'secrets') else None),
|
22 |
+
("Manual Input", None) # Will be handled below
|
23 |
+
]
|
24 |
+
|
25 |
+
for source, token in token_sources:
|
26 |
+
if token:
|
27 |
+
st.success(f"β
Token found from: {source}")
|
28 |
+
hf_token = token
|
29 |
+
break
|
30 |
+
|
31 |
+
if not hf_token:
|
32 |
+
st.warning("π No token found in environment or secrets. Please enter manually:")
|
33 |
+
hf_token = st.text_input(
|
34 |
+
"Enter your Hugging Face Token:",
|
35 |
+
type="password",
|
36 |
+
help="Get your token from https://huggingface.co/settings/tokens"
|
37 |
+
)
|
38 |
+
|
39 |
+
if hf_token:
|
40 |
+
try:
|
41 |
+
# Test token validity
|
42 |
+
api = HfApi()
|
43 |
+
user_info = api.whoami(token=hf_token)
|
44 |
+
st.success(f"β
Authenticated as: {user_info['name']}")
|
45 |
+
|
46 |
+
# Attempt to login
|
47 |
+
login(token=hf_token, add_to_git_credential=False)
|
48 |
+
return hf_token
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
st.error(f"β Token validation failed: {str(e)}")
|
52 |
+
st.info("Please check your token and ensure you have access to Mistral 7B model")
|
53 |
+
return None
|
54 |
+
|
55 |
+
return None
|
56 |
+
|
57 |
+
def check_model_access(token):
|
58 |
+
"""Check if user has access to the Mistral model"""
|
59 |
+
try:
|
60 |
+
api = HfApi()
|
61 |
+
model_info = api.model_info("mistralai/Mistral-7B-Instruct-v0.1", token=token)
|
62 |
+
st.success("β
Model access confirmed")
|
63 |
+
return True
|
64 |
+
except Exception as e:
|
65 |
+
st.error("β Cannot access Mistral 7B model")
|
66 |
+
st.info("""
|
67 |
+
**To fix this:**
|
68 |
+
1. Visit: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
|
69 |
+
2. Click "Request Access"
|
70 |
+
3. Wait for approval (usually instant for most users)
|
71 |
+
4. Refresh this page
|
72 |
+
""")
|
73 |
+
return False
|
74 |
|
75 |
@st.cache_resource
|
76 |
+
def load_model(hf_token):
|
77 |
+
"""Load the Mistral model with proper error handling"""
|
78 |
+
try:
|
79 |
+
st.info("π Loading Mistral 7B model... This may take a few minutes on first run.")
|
80 |
+
|
81 |
+
# Load tokenizer first
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
83 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
84 |
+
token=hf_token,
|
85 |
+
trust_remote_code=True
|
86 |
+
)
|
87 |
+
|
88 |
+
# Add padding token if missing
|
89 |
+
if tokenizer.pad_token is None:
|
90 |
+
tokenizer.pad_token = tokenizer.eos_token
|
91 |
+
|
92 |
+
# Load model with optimizations
|
93 |
+
model = AutoModelForCausalLM.from_pretrained(
|
94 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
95 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
96 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
97 |
+
token=hf_token,
|
98 |
+
trust_remote_code=True,
|
99 |
+
low_cpu_mem_usage=True
|
100 |
+
)
|
101 |
+
|
102 |
+
# Create pipeline
|
103 |
+
pipe = pipeline(
|
104 |
+
"text-generation",
|
105 |
+
model=model,
|
106 |
+
tokenizer=tokenizer,
|
107 |
+
max_new_tokens=512,
|
108 |
+
temperature=0.7,
|
109 |
+
do_sample=True,
|
110 |
+
pad_token_id=tokenizer.eos_token_id
|
111 |
+
)
|
112 |
+
|
113 |
+
st.success("β
Model loaded successfully!")
|
114 |
+
return pipe
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
st.error(f"β Model loading failed: {str(e)}")
|
118 |
+
st.info("Try refreshing the page or check your internet connection")
|
119 |
+
return None
|
120 |
|
121 |
def extract_text_from_pdf(file):
|
122 |
+
"""Extract text from uploaded PDF with error handling"""
|
123 |
+
try:
|
124 |
+
reader = PyPDF2.PdfReader(file)
|
125 |
+
text = ""
|
126 |
+
for page_num, page in enumerate(reader.pages):
|
127 |
+
page_text = page.extract_text()
|
128 |
+
if page_text.strip():
|
129 |
+
text += f"\n--- Page {page_num + 1} ---\n{page_text}\n"
|
130 |
+
|
131 |
+
if not text.strip():
|
132 |
+
st.warning("β οΈ No text extracted from PDF. It might be image-based.")
|
133 |
+
return ""
|
134 |
+
|
135 |
+
return text
|
136 |
+
except Exception as e:
|
137 |
+
st.error(f"β PDF processing failed: {str(e)}")
|
138 |
+
return ""
|
139 |
+
|
140 |
+
def format_prompt(context, query):
|
141 |
+
"""Create properly formatted Mistral prompt"""
|
142 |
+
if context.strip():
|
143 |
+
prompt = f"<s>[INST] Use the following context to answer the question comprehensively:\n\nContext:\n{context[:3000]}...\n\nQuestion: {query}\n\nProvide a detailed, accurate answer based on the context. [/INST]"
|
144 |
+
else:
|
145 |
+
prompt = f"<s>[INST] {query} [/INST]"
|
146 |
+
|
147 |
+
return prompt
|
148 |
+
|
149 |
+
# Main Application Flow
|
150 |
+
def main():
|
151 |
+
# Step 1: Validate token
|
152 |
+
hf_token = validate_hf_token()
|
153 |
+
|
154 |
+
if not hf_token:
|
155 |
+
st.stop()
|
156 |
+
|
157 |
+
# Step 2: Check model access
|
158 |
+
if not check_model_access(hf_token):
|
159 |
+
st.stop()
|
160 |
+
|
161 |
+
# Step 3: Load model
|
162 |
+
textgen = load_model(hf_token)
|
163 |
+
|
164 |
+
if not textgen:
|
165 |
+
st.stop()
|
166 |
+
|
167 |
+
# Step 4: User Interface
|
168 |
+
st.markdown("---")
|
169 |
+
|
170 |
+
col1, col2 = st.columns([2, 1])
|
171 |
+
|
172 |
+
with col1:
|
173 |
+
query = st.text_area(
|
174 |
+
"π Ask your question:",
|
175 |
+
height=100,
|
176 |
+
placeholder="e.g., Explain machine learning concepts, summarize this document, etc."
|
177 |
+
)
|
178 |
+
|
179 |
+
with col2:
|
180 |
+
uploaded_file = st.file_uploader(
|
181 |
+
"π Upload PDF Context (Optional):",
|
182 |
+
type=["pdf"],
|
183 |
+
help="Upload a PDF to provide context for your question"
|
184 |
+
)
|
185 |
+
|
186 |
+
# Process uploaded file
|
187 |
+
context = ""
|
188 |
+
if uploaded_file:
|
189 |
+
with st.spinner("π Extracting text from PDF..."):
|
190 |
+
context = extract_text_from_pdf(uploaded_file)
|
191 |
+
|
192 |
+
if context:
|
193 |
+
with st.expander("π View Extracted Text", expanded=False):
|
194 |
+
st.text_area("PDF Content Preview:", context[:1000] + "..." if len(context) > 1000 else context, height=200)
|
195 |
+
st.success(f"β
Extracted {len(context)} characters from PDF")
|
196 |
+
|
197 |
+
# Generate answer
|
198 |
+
if st.button("π Generate Answer", type="primary"):
|
199 |
+
if not query.strip():
|
200 |
+
st.warning("β οΈ Please enter a question")
|
201 |
+
return
|
202 |
+
|
203 |
+
with st.spinner("π€ Generating answer..."):
|
204 |
+
try:
|
205 |
+
prompt = format_prompt(context, query)
|
206 |
+
|
207 |
+
# Generate response
|
208 |
+
result = textgen(prompt, max_new_tokens=512, temperature=0.7)
|
209 |
+
generated_text = result[0]["generated_text"]
|
210 |
+
|
211 |
+
# Extract only the generated part
|
212 |
+
answer = generated_text.split("[/INST]")[-1].strip()
|
213 |
+
|
214 |
+
# Display result
|
215 |
+
st.markdown("### π― Answer:")
|
216 |
+
st.markdown(answer)
|
217 |
+
|
218 |
+
# Show token usage info
|
219 |
+
with st.expander("π Generation Details", expanded=False):
|
220 |
+
st.write(f"**Prompt length:** {len(prompt)} characters")
|
221 |
+
st.write(f"**Response length:** {len(answer)} characters")
|
222 |
+
st.write(f"**Context used:** {'Yes' if context else 'No'}")
|
223 |
+
|
224 |
+
except Exception as e:
|
225 |
+
st.error(f"β Generation failed: {str(e)}")
|
226 |
+
st.info("Try with a shorter question or refresh the page")
|
227 |
+
|
228 |
+
# Run the application
|
229 |
+
if __name__ == "__main__":
|
230 |
+
main()
|