Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,106 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
3 |
import json
|
4 |
-
|
5 |
from PIL import Image
|
6 |
import torch
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
# β
Hugging Face
|
10 |
hf_token = os.getenv("HF_TOKEN")
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
device_map="auto",
|
18 |
-
|
19 |
)
|
20 |
|
21 |
-
# β
|
22 |
extracted_text = ""
|
23 |
-
|
24 |
|
25 |
def extract_text_from_pptx_json(parsed_json: dict) -> str:
|
26 |
text = ""
|
27 |
for slide in parsed_json.values():
|
28 |
for shape in slide.values():
|
29 |
-
if shape.get(
|
30 |
-
for group_shape in shape.get(
|
31 |
-
if group_shape.get(
|
32 |
for para_key, para in group_shape.items():
|
33 |
if para_key.startswith("paragraph_"):
|
34 |
text += para.get("text", "") + "\n"
|
35 |
-
elif shape.get(
|
36 |
for para_key, para in shape.items():
|
37 |
if para_key.startswith("paragraph_"):
|
38 |
text += para.get("text", "") + "\n"
|
39 |
return text.strip()
|
40 |
|
41 |
-
# β
Handle uploaded
|
42 |
def handle_pptx_upload(pptx_file):
|
43 |
-
global extracted_text,
|
44 |
tmp_path = pptx_file.name
|
45 |
parsed_json_str, image_paths = transfer_to_structure(tmp_path, "images")
|
46 |
parsed_json = json.loads(parsed_json_str)
|
47 |
extracted_text = extract_text_from_pptx_json(parsed_json)
|
48 |
-
slide_images = image_paths
|
49 |
return extracted_text or "No readable text found in slides."
|
50 |
|
51 |
-
# β
|
52 |
def ask_llama(question):
|
53 |
-
global extracted_text,
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# β
Gradio UI
|
78 |
with gr.Blocks() as demo:
|
79 |
-
gr.Markdown("## π§ Llama 4 Scout
|
80 |
|
81 |
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"])
|
82 |
-
extract_btn = gr.Button("π Extract Text +
|
83 |
|
84 |
-
extracted_output = gr.Textbox(label="π
|
85 |
|
86 |
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output])
|
87 |
|
88 |
question = gr.Textbox(label="β Ask a Question")
|
89 |
ask_btn = gr.Button("π¬ Ask Llama 4 Scout")
|
90 |
-
ai_answer = gr.Textbox(label="π€
|
91 |
|
92 |
ask_btn.click(ask_llama, inputs=[question], outputs=[ai_answer])
|
93 |
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
+
import requests
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
+
import gradio as gr
|
7 |
+
from ppt_parser import transfer_to_structure
|
8 |
+
from transformers import AutoProcessor, Llama4ForConditionalGeneration
|
9 |
|
10 |
+
# β
Hugging Face token
|
11 |
hf_token = os.getenv("HF_TOKEN")
|
12 |
+
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
|
13 |
+
|
14 |
+
# β
Load model & processor
|
15 |
+
processor = AutoProcessor.from_pretrained(model_id, token=hf_token)
|
16 |
+
model = Llama4ForConditionalGeneration.from_pretrained(
|
17 |
+
model_id,
|
18 |
+
token=hf_token,
|
19 |
+
attn_implementation="flex_attention",
|
20 |
device_map="auto",
|
21 |
+
torch_dtype=torch.bfloat16,
|
22 |
)
|
23 |
|
24 |
+
# β
Global storage
|
25 |
extracted_text = ""
|
26 |
+
image_paths = []
|
27 |
|
28 |
def extract_text_from_pptx_json(parsed_json: dict) -> str:
|
29 |
text = ""
|
30 |
for slide in parsed_json.values():
|
31 |
for shape in slide.values():
|
32 |
+
if shape.get("type") == "group":
|
33 |
+
for group_shape in shape.get("group_content", {}).values():
|
34 |
+
if group_shape.get("type") == "text":
|
35 |
for para_key, para in group_shape.items():
|
36 |
if para_key.startswith("paragraph_"):
|
37 |
text += para.get("text", "") + "\n"
|
38 |
+
elif shape.get("type") == "text":
|
39 |
for para_key, para in shape.items():
|
40 |
if para_key.startswith("paragraph_"):
|
41 |
text += para.get("text", "") + "\n"
|
42 |
return text.strip()
|
43 |
|
44 |
+
# β
Handle uploaded PPTX
|
45 |
def handle_pptx_upload(pptx_file):
|
46 |
+
global extracted_text, image_paths
|
47 |
tmp_path = pptx_file.name
|
48 |
parsed_json_str, image_paths = transfer_to_structure(tmp_path, "images")
|
49 |
parsed_json = json.loads(parsed_json_str)
|
50 |
extracted_text = extract_text_from_pptx_json(parsed_json)
|
|
|
51 |
return extracted_text or "No readable text found in slides."
|
52 |
|
53 |
+
# β
Multimodal Q&A using Scout
|
54 |
def ask_llama(question):
|
55 |
+
global extracted_text, image_paths
|
56 |
+
|
57 |
+
if not extracted_text and not image_paths:
|
58 |
+
return "Please upload and extract a PPTX first."
|
59 |
+
|
60 |
+
# π§ Build multimodal chat messages
|
61 |
+
messages = [
|
62 |
+
{
|
63 |
+
"role": "user",
|
64 |
+
"content": [],
|
65 |
+
}
|
66 |
+
]
|
67 |
+
|
68 |
+
# Add up to 2 images to prevent OOM
|
69 |
+
for path in image_paths[:2]:
|
70 |
+
messages[0]["content"].append({"type": "image", "image": Image.open(path)})
|
71 |
+
|
72 |
+
messages[0]["content"].append({
|
73 |
+
"type": "text",
|
74 |
+
"text": f"{extracted_text}\n\nQuestion: {question}"
|
75 |
+
})
|
76 |
+
|
77 |
+
inputs = processor.apply_chat_template(
|
78 |
+
messages,
|
79 |
+
add_generation_prompt=True,
|
80 |
+
tokenize=True,
|
81 |
+
return_dict=True,
|
82 |
+
return_tensors="pt"
|
83 |
+
).to(model.device)
|
84 |
+
|
85 |
+
outputs = model.generate(**inputs, max_new_tokens=256)
|
86 |
+
|
87 |
+
response = processor.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])[0]
|
88 |
+
return response.strip()
|
89 |
|
90 |
# β
Gradio UI
|
91 |
with gr.Blocks() as demo:
|
92 |
+
gr.Markdown("## π§ Multimodal Llama 4 Scout Study Assistant")
|
93 |
|
94 |
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"])
|
95 |
+
extract_btn = gr.Button("π Extract Text + Images")
|
96 |
|
97 |
+
extracted_output = gr.Textbox(label="π Slide Text", lines=10, interactive=False)
|
98 |
|
99 |
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output])
|
100 |
|
101 |
question = gr.Textbox(label="β Ask a Question")
|
102 |
ask_btn = gr.Button("π¬ Ask Llama 4 Scout")
|
103 |
+
ai_answer = gr.Textbox(label="π€ Answer", lines=6)
|
104 |
|
105 |
ask_btn.click(ask_llama, inputs=[question], outputs=[ai_answer])
|
106 |
|