Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,14 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
3 |
import PyPDF2
|
4 |
import torch
|
5 |
|
6 |
-
st.set_page_config(page_title="Perplexity-style Q&A (
|
7 |
-
st.title("🧠 Perplexity-style
|
8 |
|
9 |
-
# Load Mistral model and tokenizer
|
10 |
@st.cache_resource
|
11 |
def load_model():
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
-
"
|
15 |
torch_dtype=torch.float16,
|
16 |
device_map="auto"
|
17 |
)
|
@@ -20,17 +19,11 @@ def load_model():
|
|
20 |
|
21 |
textgen = load_model()
|
22 |
|
23 |
-
# Extract text from uploaded PDF
|
24 |
def extract_text_from_pdf(file):
|
25 |
reader = PyPDF2.PdfReader(file)
|
26 |
-
|
27 |
-
for page in reader.pages:
|
28 |
-
text += page.extract_text() + "\n"
|
29 |
-
return text.strip()
|
30 |
|
31 |
-
# UI Layout
|
32 |
query = st.text_input("Ask a question or enter a topic:")
|
33 |
-
|
34 |
uploaded_file = st.file_uploader("Or upload a PDF to use as context:", type=["pdf"])
|
35 |
|
36 |
context = ""
|
@@ -39,12 +32,9 @@ if uploaded_file:
|
|
39 |
st.text_area("📄 Extracted PDF Text", context, height=200)
|
40 |
|
41 |
if st.button("Generate Answer"):
|
42 |
-
with st.spinner("Generating answer
|
43 |
-
prompt = query
|
44 |
-
|
45 |
-
|
46 |
-
else:
|
47 |
-
prompt = f"[INST] {query} [/INST]"
|
48 |
-
output = textgen(prompt)[0]["generated_text"]
|
49 |
st.success("Answer:")
|
50 |
-
st.write(
|
|
|
3 |
import PyPDF2
|
4 |
import torch
|
5 |
|
6 |
+
st.set_page_config(page_title="Perplexity-style Q&A (OpenHermes)", layout="wide")
|
7 |
+
st.title("🧠 Perplexity-style Study Assistant with OpenHermes-2.5")
|
8 |
|
|
|
9 |
@st.cache_resource
|
10 |
def load_model():
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("teknium/OpenHermes-2.5-Mistral-7B")
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
"teknium/OpenHermes-2.5-Mistral-7B",
|
14 |
torch_dtype=torch.float16,
|
15 |
device_map="auto"
|
16 |
)
|
|
|
19 |
|
20 |
textgen = load_model()
|
21 |
|
|
|
22 |
def extract_text_from_pdf(file):
|
23 |
reader = PyPDF2.PdfReader(file)
|
24 |
+
return "\n".join([p.extract_text() for p in reader.pages if p.extract_text()])
|
|
|
|
|
|
|
25 |
|
|
|
26 |
query = st.text_input("Ask a question or enter a topic:")
|
|
|
27 |
uploaded_file = st.file_uploader("Or upload a PDF to use as context:", type=["pdf"])
|
28 |
|
29 |
context = ""
|
|
|
32 |
st.text_area("📄 Extracted PDF Text", context, height=200)
|
33 |
|
34 |
if st.button("Generate Answer"):
|
35 |
+
with st.spinner("Generating answer..."):
|
36 |
+
prompt = f"<|system|>You are a helpful study assistant.<|user|>Context:\n{context}\n\nQuestion: {query}<|assistant|>"
|
37 |
+
result = textgen(prompt)[0]["generated_text"]
|
38 |
+
answer = result.replace(prompt, "").strip()
|
|
|
|
|
|
|
39 |
st.success("Answer:")
|
40 |
+
st.write(answer)
|