import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import PyPDF2 import torch import os st.set_page_config(page_title="Perplexity-style Q&A (Mistral Auth)", layout="wide") st.title("🧠 AI Study Assistant using Mistral 7B (Authenticated)") # ✅ Load Hugging Face token from secrets hf_token = os.getenv("HF_TOKEN") @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1", token=hf_token ) model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1", torch_dtype=torch.float16, device_map="auto", token=hf_token ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512) return pipe textgen = load_model() def extract_text_from_pdf(file): reader = PyPDF2.PdfReader(file) return "\n".join([p.extract_text() for p in reader.pages if p.extract_text()]) query = st.text_input("Ask a question or enter a topic:") uploaded_file = st.file_uploader("Or upload a PDF to use as context:", type=["pdf"]) context = "" if uploaded_file: context = extract_text_from_pdf(uploaded_file) st.text_area("📄 Extracted PDF Text", context, height=200) if st.button("Generate Answer"): with st.spinner("Generating answer..."): prompt = f"[INST] Use the following context to answer the question:\n\n{context}\n\nQuestion: {query} [/INST]" result = textgen(prompt)[0]["generated_text"] st.success("Answer:") st.write(result.replace(prompt, "").strip())