import os import json from PIL import Image import torch import gradio as gr from transformers import ( BlipImageProcessor, AutoTokenizer, Llama4ForConditionalGeneration, ) from ppt_parser import transfer_to_structure # ✅ Load Hugging Face token hf_token = os.getenv("HF_TOKEN") model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # ✅ Load image processor, tokenizer, and model manually image_processor = BlipImageProcessor.from_pretrained("Salesforce/blip-image-captioning-base") tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token) model = Llama4ForConditionalGeneration.from_pretrained( model_id, token=hf_token, attn_implementation="flex_attention", device_map="auto", torch_dtype=torch.bfloat16, ) # ✅ Global state extracted_text = "" image_paths = [] def extract_text_from_pptx_json(parsed_json: dict) -> str: text = "" for slide in parsed_json.values(): for shape in slide.values(): if shape.get("type") == "group": for group_shape in shape.get("group_content", {}).values(): if group_shape.get("type") == "text": for para_key, para in group_shape.items(): if para_key.startswith("paragraph_"): text += para.get("text", "") + "\n" elif shape.get("type") == "text": for para_key, para in shape.items(): if para_key.startswith("paragraph_"): text += para.get("text", "") + "\n" return text.strip() def handle_pptx_upload(pptx_file): global extracted_text, image_paths tmp_path = pptx_file.name parsed_json_str, image_paths = transfer_to_structure(tmp_path, "images") parsed_json = json.loads(parsed_json_str) extracted_text = extract_text_from_pptx_json(parsed_json) return extracted_text or "No readable text found in slides." def ask_llama(question): global extracted_text, image_paths if not extracted_text and not image_paths: return "Please upload and extract a PPTX file first." # ✅ Use the first image only (you can expand to multiple with batching) image = Image.open(image_paths[0]).convert("RGB") vision_inputs = image_processor(images=image, return_tensors="pt").to(model.device) prompt = f"<|user|>\n{extracted_text}\n\nQuestion: {question}<|end|>\n<|assistant|>\n" text_inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( input_ids=text_inputs["input_ids"], pixel_values=vision_inputs["pixel_values"], max_new_tokens=256, ) response = tokenizer.decode(output[0][text_inputs["input_ids"].shape[-1]:], skip_special_tokens=True) return response.strip() # ✅ Gradio UI with gr.Blocks() as demo: gr.Markdown("## 🧠 Llama-4-Scout Multimodal Study Assistant") pptx_input = gr.File(label="📂 Upload PPTX File", file_types=[".pptx"]) extract_btn = gr.Button("📜 Extract Text + Slides") extracted_output = gr.Textbox(label="📄 Slide Text", lines=10, interactive=False) extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output]) question = gr.Textbox(label="❓ Ask a Question") ask_btn = gr.Button("💬 Ask Scout") ai_answer = gr.Textbox(label="🤖 Llama Answer", lines=6) ask_btn.click(ask_llama, inputs=[question], outputs=[ai_answer]) if __name__ == "__main__": demo.launch()