import os import json import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from ppt_parser import transfer_to_structure # ✅ Hugging Face token (optional if public + unauthenticated) hf_token = os.getenv("HF_TOKEN", None) model_id = "meta-llama/Llama-3.1-8B-Instruct" # ✅ Load model + tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token) model = AutoModelForCausalLM.from_pretrained( model_id, token=hf_token, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto" ) llama_pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512) # ✅ Global storage extracted_text = "" def extract_text_from_pptx_json(parsed_json: dict) -> str: text = "" for slide in parsed_json.values(): for shape in slide.values(): if shape.get("type") == "group": for group_shape in shape.get("group_content", {}).values(): if group_shape.get("type") == "text": for para_key, para in group_shape.items(): if para_key.startswith("paragraph_"): text += para.get("text", "") + "\n" elif shape.get("type") == "text": for para_key, para in shape.items(): if para_key.startswith("paragraph_"): text += para.get("text", "") + "\n" return text.strip() def handle_pptx_upload(pptx_file): global extracted_text tmp_path = pptx_file.name parsed_json_str, _ = transfer_to_structure(tmp_path, "images") parsed_json = json.loads(parsed_json_str) extracted_text = extract_text_from_pptx_json(parsed_json) return extracted_text or "No readable text found in slides." def ask_llama(question): global extracted_text if not extracted_text: return "Please upload a PPTX file first." prompt = f"<|user|>\nContext:\n{extracted_text}\n\nQuestion: {question}<|end|>\n<|assistant|>\n" response = llama_pipe(prompt)[0]["generated_text"] return response.replace(prompt, "").strip() # ✅ Gradio UI with gr.Blocks() as demo: gr.Markdown("## 🧠 Study Assistant with LLaMA 3.1 8B") pptx_input = gr.File(label="📂 Upload PPTX File", file_types=[".pptx"]) extract_btn = gr.Button("📜 Extract Slide Text") extracted_output = gr.Textbox(label="📄 Slide Text", lines=10, interactive=False) extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output]) question = gr.Textbox(label="❓ Ask a Question") ask_btn = gr.Button("💬 Ask LLaMA") ai_answer = gr.Textbox(label="🤖 LLaMA Answer", lines=6) ask_btn.click(ask_llama, inputs=[question], outputs=[ai_answer]) if __name__ == "__main__": demo.launch()