File size: 1,307 Bytes
a1b39f6
 
 
 
73dbadf
a1b39f6
 
 
73dbadf
 
 
 
a1b39f6
 
 
73dbadf
 
 
a1b39f6
73dbadf
a1b39f6
 
 
73dbadf
 
a1b39f6
73dbadf
a1b39f6
73dbadf
a1b39f6
 
73dbadf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-v2-m3")
model = AutoModelForSequenceClassification.from_pretrained("BAAI/bge-reranker-v2-m3")

# Define reranking function
def rerank(query, documents_text):
    documents = documents_text.strip().split('\n')
    pairs = [(query, doc) for doc in documents]
    inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        scores = model(**inputs).logits.squeeze(-1)
    results = sorted(zip(documents, scores.tolist()), key=lambda x: x[1], reverse=True)
    output = "\n\n".join([f"Score: {score:.4f}\n{doc}" for doc, score in results])
    return output

# Gradio Interface
iface = gr.Interface(
    fn=rerank,
    inputs=[
        gr.Textbox(label="Query", placeholder="Enter your search query", lines=1),
        gr.Textbox(label="Documents (one per line)", placeholder="Enter one document per line", lines=10)
    ],
    outputs=gr.Textbox(label="Reranked Output"),
    title="BGE Reranker v2 M3",
    description="Input a query and multiple documents. Returns reranked results with scores."
)

# Launch the interface (no share=True needed)
iface.launch()