File size: 1,188 Bytes
a1b39f6
 
 
 
9f53bc9
a1b39f6
 
 
9f53bc9
 
 
 
a1b39f6
 
 
9f53bc9
2e00785
 
 
a1b39f6
9f53bc9
a1b39f6
 
 
9f53bc9
 
a1b39f6
2e00785
a1b39f6
9f53bc9
a1b39f6
 
9f53bc9
73dbadf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-v2-m3")
model = AutoModelForSequenceClassification.from_pretrained("BAAI/bge-reranker-v2-m3")

# Reranking logic
def rerank(query, docs_text):
    docs = docs_text.strip().split('\n')
    pairs = [(query, doc) for doc in docs]
    inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        scores = model(**inputs).logits.squeeze(-1)
    results = sorted(zip(docs, scores.tolist()), key=lambda x: x[1], reverse=True)

    # Return structured JSON array
    return [{"score": round(score, 4), "document": doc} for doc, score in results]

# Create API-ready Interface
iface = gr.Interface(
    fn=rerank,
    inputs=[
        gr.Textbox(label="Query", lines=1),
        gr.Textbox(label="Documents (one per line)", lines=10)
    ],
    outputs="json",
    title="BGE Reranker v2 M3",
    description="Rerank a list of documents based on a search query using BGE v2 M3."
)

# ✅ Do NOT use `share=True`, do NOT set `ssr_mode`
iface.launch()