Spaces:
Runtime error
Runtime error
File size: 7,278 Bytes
9fefb79 3eb719d 9fefb79 af367a2 25a67f0 9fefb79 3eb719d 2a35e7d 3eb719d 755cdec 3eb719d 8a12a27 3eb719d 9fefb79 af367a2 9fefb79 af367a2 9fefb79 9ee75ea 9fefb79 3eb719d 9fefb79 9ee75ea af367a2 9fefb79 1cbc30e 9fefb79 af367a2 9fefb79 9ee75ea 9fefb79 9ee75ea 9fefb79 9ee75ea af367a2 9fefb79 1cbc30e 9fefb79 9ee75ea af367a2 9ee75ea 3eb719d 9ee75ea af367a2 9ee75ea af367a2 9ee75ea af367a2 1cbc30e d6d51bb 97cea74 d6d51bb 97cea74 d6d51bb 97cea74 d6d51bb 97cea74 d6d51bb 97cea74 af367a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import streamlit as st
from streamlit_cropper import st_cropper
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, DonutProcessor, NougatProcessor
import torch
import re
import pytesseract
from io import BytesIO
import openai
def predict_arabic(img, model_name="UBC-NLP/Qalam"):
# if img is None:
# _,generated_text=main(image)
# return generated_text
# else:
# model_name = "UBC-NLP/Qalam"
processor = TrOCRProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
images = img.convert("RGB")
pixel_values = processor(images, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values, max_length=256)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=True)[0]
return generated_text
def predict_english(img, model_name="naver-clova-ix/donut-base-finetuned-cord-v2"):
processor = DonutProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(
task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
image = img.convert("RGB")
pixel_values = processor(image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence).strip()
return sequence
def predict_nougat(img, model_name="facebook/nougat-small"):
device="cpu"
processor = NougatProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
image = img.convert("RGB")
pixel_values = processor(image, return_tensors="pt", data_format="channels_first").pixel_values
# generate transcription (here we only generate 30 tokens)
outputs = model.generate(
pixel_values.to(device),
min_length=1,
max_new_tokens=1500,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
)
page_sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
# page_sequence = processor.post_process_generation(page_sequence, fix_markdown=False)
return page_sequence
def predict_tesseract(img):
text = pytesseract.image_to_string(Image.open(img))
return text
st.set_option('deprecation.showfileUploaderEncoding', False)
st.set_page_config(
page_title="Ex-stream-ly Cool App",
page_icon="🖊️",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://www.extremelycoolapp.com/help',
'Report a bug': "https://www.extremelycoolapp.com/bug",
'About': "# This is a header. This is an *extremely* cool app!"
}
)
# Upload an image and set some options for demo purposes
st.header("Qalam: A Multilingual OCR System")
st.sidebar.header("Configuration and Image Upload")
st.sidebar.subheader("Adjust Image Enhancement Options")
img_file = st.sidebar.file_uploader(label='Upload a file', type=['png', 'jpg'])
realtime_update = st.sidebar.checkbox(label="Update in Real Time", value=True)
# box_color = st.sidebar.color_picker(label="Box Color", value='#0000FF')
aspect_choice = st.sidebar.radio(label="Aspect Ratio", options=[
"Free"])
aspect_dict = {
"Free": None
}
aspect_ratio = aspect_dict[aspect_choice]
st.sidebar.subheader("Select OCR Language and Model")
Lng = st.sidebar.selectbox(label="Language", options=[
"English", "Arabic", "French", "Korean", "Chinese"])
Models = {
"Arabic": "Qalam",
"English": "Nougat",
"French": "Tesseract",
"Korean": "Donut",
"Chinese": "Donut"
}
st.sidebar.markdown(f"### Selected Model: {Models[Lng]}")
if img_file:
img = Image.open(img_file)
if not realtime_update:
st.write("Double click to save crop")
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Input: Upload and Crop Your Image")
# Get a cropped image from the frontend
cropped_img = st_cropper(
img,
realtime_update=realtime_update,
box_color="#FF0000",
aspect_ratio=aspect_ratio,
should_resize_image=True,
)
with col2:
# Manipulate cropped image at will
st.subheader("Output: Preview and Analyze")
# _ = cropped_img.thumbnail((150, 150))
st.image(cropped_img)
button = st.button("Run OCR")
with col3:
if button:
with st.spinner('Running OCR...'):
if Lng == "Arabic":
ocr_text = predict_arabic(cropped_img)
elif Lng == "English":
ocr_text = predict_nougat(cropped_img)
elif Lng == "French":
ocr_text = predict_tesseract(cropped_img)
elif Lng == "Korean":
ocr_text = predict_english(cropped_img)
elif Lng == "Chinese":
ocr_text = predict_english(cropped_img)
st.subheader(f"OCR Results for {Lng}")
st.write(ocr_text)
text_file = BytesIO(ocr_text.encode())
st.download_button('Download Text', text_file, file_name='ocr_text.txt')
openai.api_key = ""
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("How can I help?"):
st.session_state.messages.append({"role": "user", "content": ocr_text+ prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for response in openai.ChatCompletion.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
):
full_response += response.choices[0].delta.get("content", "")
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
|