Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,177 Bytes
f2625cd f226f06 a677a59 523927e d3c87a6 523927e d3c87a6 4a46abc 10ad72f f2625cd 0ef09d3 d3c87a6 0ef09d3 f2625cd d3c87a6 10ad72f f2625cd 10ad72f 6ed7668 4a46abc 4c5e550 10ad72f 4c5e550 4a46abc 523927e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# Add this at the top of your script
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
from data_loader import (
load_data,
CATEGORIES,
METHODOLOGY,
HEADER_CONTENT,
CARDS
)
from tabs.leaderboard_v1 import create_leaderboard_tab, filter_leaderboard
from tabs.leaderboard_v2 import create_leaderboard_v2_interface
def create_app():
df = load_data()
with gr.Blocks(
theme=gr.themes.Default(primary_hue=gr.themes.colors.red)
) as app:
with gr.Tabs():
# Create v2 tab
with gr.Tab("Leaderboard v2"):
create_leaderboard_v2_interface()
# Create v1 tab
with gr.Tab("Leaderboard v1"):
lb_output, lb_plot1, lb_plot2 = create_leaderboard_tab(
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
)
# Initial loads
app.load(
fn=lambda: filter_leaderboard(
df, "All", list(CATEGORIES.keys())[0], "Performance"
),
outputs=[lb_output, lb_plot1, lb_plot2],
)
return app
demo = create_app()
demo.launch()
|