rag-youtube-assistant / app /data_processor.py
ganesh3's picture
second modification
507c938
raw
history blame
9.7 kB
import logging
from minsearch import Index
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import re
from elasticsearch import Elasticsearch
import os
import json
from transcript_extractor import get_transcript
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def clean_text(text):
if not isinstance(text, str):
logger.warning(f"Non-string input to clean_text: {type(text)}")
return ""
cleaned = re.sub(r'[^\w\s.,!?]', ' ', text)
cleaned = re.sub(r'\s+', ' ', cleaned).strip()
logger.info(f"Cleaned text: '{cleaned[:100]}...'")
return cleaned
class DataProcessor:
def __init__(self, text_fields=["content", "title", "description"],
keyword_fields=["video_id", "author", "upload_date"],
embedding_model="all-MiniLM-L6-v2"):
self.text_index = Index(text_fields=text_fields, keyword_fields=keyword_fields)
self.embedding_model = SentenceTransformer(embedding_model)
self.documents = []
self.embeddings = []
self.index_built = False
self.current_index_name = None
elasticsearch_host = os.getenv('ELASTICSEARCH_HOST', 'localhost')
elasticsearch_port = int(os.getenv('ELASTICSEARCH_PORT', 9200))
self.es = Elasticsearch([f'http://{elasticsearch_host}:{elasticsearch_port}'])
logger.info(f"DataProcessor initialized with Elasticsearch at {elasticsearch_host}:{elasticsearch_port}")
def process_transcript(self, video_id, transcript_data):
if not transcript_data or 'metadata' not in transcript_data or 'transcript' not in transcript_data:
logger.error(f"Invalid transcript data for video {video_id}")
return None
metadata = transcript_data['metadata']
transcript = transcript_data['transcript']
logger.info(f"Processing transcript for video {video_id}")
logger.info(f"Number of transcript segments: {len(transcript)}")
full_transcript = " ".join([segment.get('text', '') for segment in transcript])
cleaned_transcript = clean_text(full_transcript)
if not cleaned_transcript:
logger.warning(f"Empty cleaned transcript for video {video_id}")
return None
doc = {
"video_id": video_id,
"content": cleaned_transcript,
"segment_id": f"{video_id}_full",
"title": clean_text(metadata.get('title', '')),
"author": metadata.get('author', ''),
"upload_date": metadata.get('upload_date', ''),
"view_count": metadata.get('view_count', 0),
"like_count": metadata.get('like_count', 0),
"comment_count": metadata.get('comment_count', 0),
"video_duration": metadata.get('duration', '')
}
self.documents.append(doc)
self.embeddings.append(self.embedding_model.encode(cleaned_transcript + " " + metadata.get('title', '')))
logger.info(f"Processed transcript for video {video_id}")
return f"video_{video_id}_{self.embedding_model.get_sentence_embedding_dimension()}"
def build_index(self, index_name):
if not self.documents:
logger.error("No documents to index")
return None
logger.info(f"Building index with {len(self.documents)} documents")
try:
self.text_index.fit(self.documents)
self.index_built = True
logger.info("Text index built successfully")
except Exception as e:
logger.error(f"Error building text index: {str(e)}")
raise
self.embeddings = np.array(self.embeddings)
try:
if not self.es.indices.exists(index=index_name):
self.es.indices.create(index=index_name, body={
"mappings": {
"properties": {
"embedding": {"type": "dense_vector", "dims": self.embeddings.shape[1]},
"content": {"type": "text"},
"video_id": {"type": "keyword"},
"segment_id": {"type": "keyword"},
"title": {"type": "text"},
"author": {"type": "keyword"},
"upload_date": {"type": "date"},
"view_count": {"type": "integer"},
"like_count": {"type": "integer"},
"comment_count": {"type": "integer"},
"video_duration": {"type": "text"}
}
}
})
logger.info(f"Created Elasticsearch index: {index_name}")
for doc, embedding in zip(self.documents, self.embeddings):
doc_with_embedding = doc.copy()
doc_with_embedding['embedding'] = embedding.tolist()
self.es.index(index=index_name, body=doc_with_embedding, id=doc['segment_id'])
logger.info(f"Successfully indexed {len(self.documents)} documents in Elasticsearch")
self.current_index_name = index_name
return index_name
except Exception as e:
logger.error(f"Error building Elasticsearch index: {str(e)}")
raise
def ensure_index_built(self, video_id, embedding_model):
index_name = f"video_{video_id}_{embedding_model.replace('-', '_')}".lower()
if not self.es.indices.exists(index=index_name):
logger.info(f"Index {index_name} does not exist. Building now...")
transcript_data = get_transcript(video_id)
if transcript_data:
self.process_transcript(video_id, transcript_data)
return self.build_index(index_name)
else:
logger.error(f"Failed to retrieve transcript for video {video_id}")
return None
return index_name
def search(self, query, filter_dict={}, boost_dict={}, num_results=10, method='hybrid', index_name=None):
if not index_name:
logger.error("No index name provided for search.")
raise ValueError("No index name provided for search.")
if not self.es.indices.exists(index=index_name):
logger.error(f"Index {index_name} does not exist.")
raise ValueError(f"Index {index_name} does not exist.")
logger.info(f"Performing {method} search for query: {query} in index: {index_name}")
if method == 'text':
return self.text_search(query, filter_dict, boost_dict, num_results, index_name)
elif method == 'embedding':
return self.embedding_search(query, num_results, index_name)
else: # hybrid search
text_results = self.text_search(query, filter_dict, boost_dict, num_results, index_name)
embedding_results = self.embedding_search(query, num_results, index_name)
return self.combine_results(text_results, embedding_results, num_results)
def text_search(self, query, filter_dict={}, boost_dict={}, num_results=10, index_name=None):
if not index_name:
logger.error("No index name provided for text search.")
raise ValueError("No index name provided for text search.")
# Perform text search using Elasticsearch
search_body = {
"query": {
"multi_match": {
"query": query,
"fields": ["content", "title"]
}
},
"size": num_results
}
response = self.es.search(index=index_name, body=search_body)
return [hit['_source'] for hit in response['hits']['hits']]
def embedding_search(self, query, num_results=10, index_name=None):
if not index_name:
logger.error("No index name provided for embedding search.")
raise ValueError("No index name provided for embedding search.")
query_vector = self.embedding_model.encode(query).tolist()
script_query = {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
"params": {"query_vector": query_vector}
}
}
}
response = self.es.search(
index=index_name,
body={
"size": num_results,
"query": script_query,
"_source": {"excludes": ["embedding"]}
}
)
return [hit['_source'] for hit in response['hits']['hits']]
def combine_results(self, text_results, embedding_results, num_results):
combined = []
for i in range(max(len(text_results), len(embedding_results))):
if i < len(text_results):
combined.append(text_results[i])
if i < len(embedding_results):
combined.append(embedding_results[i])
seen = set()
deduped = []
for doc in combined:
if doc['segment_id'] not in seen:
seen.add(doc['segment_id'])
deduped.append(doc)
return deduped[:num_results]
def process_query(self, query):
return clean_text(query)
def set_embedding_model(self, model_name):
self.embedding_model = SentenceTransformer(model_name)
logger.info(f"Embedding model set to: {model_name}")