Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from transcript_extractor import extract_video_id, get_transcript, get_channel_videos, process_videos | |
from data_processor import DataProcessor | |
from database import DatabaseHandler | |
from rag import RAGSystem | |
from query_rewriter import QueryRewriter | |
from evaluation import EvaluationSystem | |
from sentence_transformers import SentenceTransformer | |
import os | |
import json | |
import requests | |
from tqdm import tqdm | |
import sqlite3 | |
# Initialize components | |
def init_components(): | |
db_handler = DatabaseHandler() | |
data_processor = DataProcessor() | |
rag_system = RAGSystem(data_processor) | |
query_rewriter = QueryRewriter() | |
evaluation_system = EvaluationSystem(data_processor, db_handler) | |
return db_handler, data_processor, rag_system, query_rewriter, evaluation_system | |
db_handler, data_processor, rag_system, query_rewriter, evaluation_system = init_components() | |
# Ground Truth Generation | |
def generate_questions(transcript): | |
OLLAMA_HOST = os.getenv('OLLAMA_HOST', 'localhost') | |
OLLAMA_PORT = os.getenv('OLLAMA_PORT', '11434') | |
prompt_template = """ | |
You are an AI assistant tasked with generating questions based on a YouTube video transcript. | |
Formulate 10 questions that a user might ask based on the provided transcript. | |
Make the questions specific to the content of the transcript. | |
The questions should be complete and not too short. Use as few words as possible from the transcript. | |
The transcript: | |
{transcript} | |
Provide the output in parsable JSON without using code blocks: | |
{{"questions": ["question1", "question2", ..., "question10"]}} | |
""".strip() | |
prompt = prompt_template.format(transcript=transcript) | |
try: | |
response = requests.post(f'http://{OLLAMA_HOST}:{OLLAMA_PORT}/api/generate', json={ | |
'model': 'phi3.5', | |
'prompt': prompt | |
}) | |
response.raise_for_status() | |
return json.loads(response.json()['response']) | |
except requests.RequestException as e: | |
st.error(f"Error generating questions: {str(e)}") | |
return None | |
def generate_ground_truth(video_id): | |
transcript_data = get_transcript(video_id) | |
if transcript_data and 'transcript' in transcript_data: | |
full_transcript = " ".join([entry['text'] for entry in transcript_data['transcript']]) | |
questions = generate_questions(full_transcript) | |
if questions and 'questions' in questions: | |
df = pd.DataFrame([(video_id, q) for q in questions['questions']], columns=['video_id', 'question']) | |
os.makedirs('data', exist_ok=True) | |
df.to_csv('data/ground-truth-retrieval.csv', index=False) | |
st.success("Ground truth data generated and saved to data/ground-truth-retrieval.csv") | |
return df | |
else: | |
st.error("Failed to generate questions.") | |
else: | |
st.error("Failed to generate ground truth data due to transcript retrieval error.") | |
return None | |
# RAG Evaluation | |
def evaluate_rag(sample_size=200): | |
try: | |
ground_truth = pd.read_csv('data/ground-truth-retrieval.csv') | |
except FileNotFoundError: | |
st.error("Ground truth file not found. Please generate ground truth data first.") | |
return None | |
sample = ground_truth.sample(n=min(sample_size, len(ground_truth)), random_state=1) | |
evaluations = [] | |
prompt_template = """ | |
You are an expert evaluator for a Youtube transcript assistant. | |
Your task is to analyze the relevance of the generated answer to the given question. | |
Based on the relevance of the generated answer, you will classify it | |
as "NON_RELEVANT", "PARTLY_RELEVANT", or "RELEVANT". | |
Here is the data for evaluation: | |
Question: {question} | |
Generated Answer: {answer_llm} | |
Please analyze the content and context of the generated answer in relation to the question | |
and provide your evaluation in parsable JSON without using code blocks: | |
{{ | |
"Relevance": "NON_RELEVANT" | "PARTLY_RELEVANT" | "RELEVANT", | |
"Explanation": "[Provide a brief explanation for your evaluation]" | |
}} | |
""".strip() | |
progress_bar = st.progress(0) | |
for i, (_, row) in enumerate(sample.iterrows()): | |
question = row['question'] | |
answer_llm = rag_system.query(question) | |
prompt = prompt_template.format(question=question, answer_llm=answer_llm) | |
evaluation = rag_system.query(prompt) # Assuming rag_system can handle this type of query | |
try: | |
evaluation_json = json.loads(evaluation) | |
evaluations.append((row['video_id'], question, answer_llm, evaluation_json['Relevance'], evaluation_json['Explanation'])) | |
except json.JSONDecodeError: | |
st.warning(f"Failed to parse evaluation for question: {question}") | |
progress_bar.progress((i + 1) / len(sample)) | |
# Store RAG evaluations in the database | |
conn = sqlite3.connect('data/sqlite.db') | |
cursor = conn.cursor() | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS rag_evaluations ( | |
video_id TEXT, | |
question TEXT, | |
answer TEXT, | |
relevance TEXT, | |
explanation TEXT | |
) | |
''') | |
cursor.executemany(''' | |
INSERT INTO rag_evaluations (video_id, question, answer, relevance, explanation) | |
VALUES (?, ?, ?, ?, ?) | |
''', evaluations) | |
conn.commit() | |
conn.close() | |
st.success("Evaluation complete. Results stored in the database.") | |
return evaluations | |
def main(): | |
st.title("YouTube Transcript RAG System") | |
tab1, tab2, tab3 = st.tabs(["RAG System", "Ground Truth Generation", "Evaluation"]) | |
with tab1: | |
st.header("RAG System") | |
# Input section | |
input_type = st.radio("Select input type:", ["Video URL", "Channel URL", "YouTube ID"]) | |
input_value = st.text_input("Enter the URL or ID:") | |
embedding_model = st.selectbox("Select embedding model:", ["all-MiniLM-L6-v2", "all-mpnet-base-v2"]) | |
if st.button("Process"): | |
with st.spinner("Processing..."): | |
data_processor.embedding_model = SentenceTransformer(embedding_model) | |
if input_type == "Video URL": | |
video_id = extract_video_id(input_value) | |
if video_id: | |
process_single_video(video_id, embedding_model) | |
else: | |
st.error("Failed to extract video ID from the URL") | |
elif input_type == "Channel URL": | |
channel_videos = get_channel_videos(input_value) | |
if channel_videos: | |
process_multiple_videos([video['video_id'] for video in channel_videos], embedding_model) | |
else: | |
st.error("Failed to retrieve videos from the channel") | |
else: | |
process_single_video(input_value, embedding_model) | |
# Query section | |
st.subheader("Query the RAG System") | |
query = st.text_input("Enter your query:") | |
rewrite_method = st.radio("Query rewriting method:", ["None", "Chain of Thought", "ReAct"]) | |
search_method = st.radio("Search method:", ["Hybrid", "Text-only", "Embedding-only"]) | |
if st.button("Search"): | |
with st.spinner("Searching..."): | |
if rewrite_method == "Chain of Thought": | |
query = query_rewriter.rewrite_cot(query) | |
elif rewrite_method == "ReAct": | |
query = query_rewriter.rewrite_react(query) | |
search_method_map = {"Hybrid": "hybrid", "Text-only": "text", "Embedding-only": "embedding"} | |
response = rag_system.query(query, search_method=search_method_map[search_method]) | |
st.write("Response:", response) | |
# Feedback | |
feedback = st.radio("Provide feedback:", ["+1", "-1"]) | |
if st.button("Submit Feedback"): | |
db_handler.add_user_feedback("all_videos", query, 1 if feedback == "+1" else -1) | |
st.success("Feedback submitted successfully!") | |
with tab2: | |
st.header("Ground Truth Generation") | |
video_id = st.text_input("Enter YouTube Video ID for ground truth generation:") | |
if st.button("Generate Ground Truth"): | |
with st.spinner("Generating ground truth..."): | |
ground_truth_df = generate_ground_truth(video_id) | |
if ground_truth_df is not None: | |
st.dataframe(ground_truth_df) | |
csv = ground_truth_df.to_csv(index=False) | |
st.download_button( | |
label="Download Ground Truth CSV", | |
data=csv, | |
file_name="ground_truth.csv", | |
mime="text/csv", | |
) | |
with tab3: | |
st.header("RAG Evaluation") | |
sample_size = st.number_input("Enter sample size for evaluation:", min_value=1, max_value=1000, value=200) | |
if st.button("Run Evaluation"): | |
with st.spinner("Running evaluation..."): | |
evaluation_results = evaluate_rag(sample_size) | |
if evaluation_results: | |
st.write("Evaluation Results:") | |
st.dataframe(pd.DataFrame(evaluation_results, columns=['Video ID', 'Question', 'Answer', 'Relevance', 'Explanation'])) | |
def process_single_video(video_id, embedding_model): | |
# Check if the video has already been processed with the current embedding model | |
existing_index = db_handler.get_elasticsearch_index(video_id, embedding_model) | |
if existing_index: | |
st.info(f"Video {video_id} has already been processed with {embedding_model}. Using existing index: {existing_index}") | |
return existing_index | |
transcript_data = get_transcript(video_id) | |
if transcript_data: | |
# Store video metadata in the database | |
video_data = { | |
'video_id': video_id, | |
'title': transcript_data['metadata'].get('title', 'Unknown Title'), | |
'author': transcript_data['metadata'].get('author', 'Unknown Author'), | |
'upload_date': transcript_data['metadata'].get('upload_date', 'Unknown Date'), | |
'view_count': int(transcript_data['metadata'].get('view_count', 0)), | |
'like_count': int(transcript_data['metadata'].get('like_count', 0)), | |
'comment_count': int(transcript_data['metadata'].get('comment_count', 0)), | |
'video_duration': transcript_data['metadata'].get('duration', 'Unknown Duration') | |
} | |
db_handler.add_video(video_data) | |
# Store transcript segments in the database | |
for i, segment in enumerate(transcript_data['transcript']): | |
segment_data = { | |
'segment_id': f"{video_id}_{i}", | |
'video_id': video_id, | |
'content': segment.get('text', ''), | |
'start_time': segment.get('start', 0), | |
'duration': segment.get('duration', 0) | |
} | |
db_handler.add_transcript_segment(segment_data) | |
# Process transcript for RAG system | |
data_processor.process_transcript(video_id, transcript_data) | |
# Create Elasticsearch index | |
index_name = f"video_{video_id}_{embedding_model}" | |
data_processor.build_index(index_name) | |
# Store Elasticsearch index information | |
db_handler.add_elasticsearch_index(video_id, index_name, embedding_model) | |
st.success(f"Processed and indexed transcript for video {video_id}") | |
st.write("Metadata:", transcript_data['metadata']) | |
return index_name | |
else: | |
st.error(f"Failed to retrieve transcript for video {video_id}") | |
return None | |
def process_multiple_videos(video_ids, embedding_model): | |
indices = [] | |
for video_id in video_ids: | |
index = process_single_video(video_id, embedding_model) | |
if index: | |
indices.append(index) | |
st.success(f"Processed and indexed transcripts for {len(indices)} videos") | |
return indices | |
if __name__ == "__main__": | |
main() |