Spaces:
Sleeping
Sleeping
Update app/rag.py
Browse files- app/rag.py +47 -66
app/rag.py
CHANGED
|
@@ -1,13 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
-
import ollama
|
| 4 |
import logging
|
| 5 |
-
import time
|
| 6 |
import sys
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# Configure logging for stdout only
|
| 11 |
logging.basicConfig(
|
| 12 |
level=logging.INFO,
|
| 13 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
@@ -25,56 +22,30 @@ Context from transcript:
|
|
| 25 |
User Question: {question}
|
| 26 |
|
| 27 |
Please provide a clear, concise answer based only on the information given in the context. If the context doesn't contain enough information to fully answer the question, acknowledge this in your response.
|
| 28 |
-
|
| 29 |
-
Guidelines:
|
| 30 |
-
1. Use only information from the provided context
|
| 31 |
-
2. Be specific and direct in your answer
|
| 32 |
-
3. If context is insufficient, say so
|
| 33 |
-
4. Maintain accuracy and avoid speculation
|
| 34 |
-
5. Use natural, conversational language
|
| 35 |
""".strip()
|
| 36 |
|
| 37 |
class RAGSystem:
|
| 38 |
def __init__(self, data_processor):
|
| 39 |
self.data_processor = data_processor
|
| 40 |
-
self.model =
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def check_ollama_service(self):
|
| 48 |
-
try:
|
| 49 |
-
ollama.list()
|
| 50 |
-
logger.info("Ollama service is accessible.")
|
| 51 |
-
self.pull_model()
|
| 52 |
-
except Exception as e:
|
| 53 |
-
logger.error(f"An error occurred while connecting to Ollama: {e}")
|
| 54 |
-
logger.error(f"Please ensure Ollama is running and accessible at {self.ollama_host}")
|
| 55 |
|
| 56 |
-
def
|
| 57 |
try:
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
except Exception as e:
|
| 61 |
-
logger.error(f"Error
|
| 62 |
-
|
| 63 |
-
def generate(self, prompt):
|
| 64 |
-
for attempt in range(self.max_retries):
|
| 65 |
-
try:
|
| 66 |
-
response = ollama.chat(
|
| 67 |
-
model=self.model,
|
| 68 |
-
messages=[{"role": "user", "content": prompt}]
|
| 69 |
-
)
|
| 70 |
-
print("Printing the response from OLLAMA: "+response['message']['content'])
|
| 71 |
-
return response['message']['content']
|
| 72 |
-
except Exception as e:
|
| 73 |
-
logger.error(f"Error generating response on attempt {attempt + 1}: {e}")
|
| 74 |
-
if attempt == self.max_retries - 1:
|
| 75 |
-
logger.error("All retries exhausted. Unable to generate response.")
|
| 76 |
-
return None
|
| 77 |
-
time.sleep(2 ** attempt) # Exponential backoff
|
| 78 |
|
| 79 |
def get_prompt(self, user_query, relevant_docs):
|
| 80 |
context = "\n".join([doc['content'] for doc in relevant_docs])
|
|
@@ -88,43 +59,53 @@ class RAGSystem:
|
|
| 88 |
if not index_name:
|
| 89 |
raise ValueError("No index name provided. Please select a video and ensure it has been processed.")
|
| 90 |
|
| 91 |
-
relevant_docs = self.data_processor.search(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
if not relevant_docs:
|
| 94 |
logger.warning("No relevant documents found for the query.")
|
| 95 |
return "I couldn't find any relevant information to answer your query.", ""
|
| 96 |
|
| 97 |
prompt = self.get_prompt(user_query, relevant_docs)
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
answer = response['message']['content']
|
| 105 |
return answer, prompt
|
|
|
|
| 106 |
except Exception as e:
|
| 107 |
logger.error(f"An error occurred in the RAG system: {e}")
|
| 108 |
return f"An error occurred: {str(e)}", ""
|
| 109 |
|
| 110 |
def rewrite_cot(self, query):
|
| 111 |
-
prompt = f"""
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
response = self.generate(prompt)
|
| 117 |
if response:
|
| 118 |
return response, prompt
|
| 119 |
-
return query, prompt
|
| 120 |
|
| 121 |
def rewrite_react(self, query):
|
| 122 |
-
prompt = f"""
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
| 127 |
response = self.generate(prompt)
|
| 128 |
if response:
|
| 129 |
return response, prompt
|
| 130 |
-
return query, prompt
|
|
|
|
| 1 |
import os
|
| 2 |
from dotenv import load_dotenv
|
|
|
|
| 3 |
import logging
|
|
|
|
| 4 |
import sys
|
| 5 |
+
from transformers import pipeline
|
| 6 |
|
| 7 |
+
# Configure logging
|
|
|
|
|
|
|
| 8 |
logging.basicConfig(
|
| 9 |
level=logging.INFO,
|
| 10 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
|
|
| 22 |
User Question: {question}
|
| 23 |
|
| 24 |
Please provide a clear, concise answer based only on the information given in the context. If the context doesn't contain enough information to fully answer the question, acknowledge this in your response.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
""".strip()
|
| 26 |
|
| 27 |
class RAGSystem:
|
| 28 |
def __init__(self, data_processor):
|
| 29 |
self.data_processor = data_processor
|
| 30 |
+
self.model = pipeline(
|
| 31 |
+
"text-generation",
|
| 32 |
+
model="google/flan-t5-base", # Using a smaller model suitable for Spaces
|
| 33 |
+
device=-1 # Use CPU
|
| 34 |
+
)
|
| 35 |
+
logger.info("Initialized RAG system with flan-t5-base model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
def generate(self, prompt):
|
| 38 |
try:
|
| 39 |
+
response = self.model(
|
| 40 |
+
prompt,
|
| 41 |
+
max_length=512,
|
| 42 |
+
min_length=64,
|
| 43 |
+
num_return_sequences=1
|
| 44 |
+
)[0]['generated_text']
|
| 45 |
+
return response
|
| 46 |
except Exception as e:
|
| 47 |
+
logger.error(f"Error generating response: {e}")
|
| 48 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def get_prompt(self, user_query, relevant_docs):
|
| 51 |
context = "\n".join([doc['content'] for doc in relevant_docs])
|
|
|
|
| 59 |
if not index_name:
|
| 60 |
raise ValueError("No index name provided. Please select a video and ensure it has been processed.")
|
| 61 |
|
| 62 |
+
relevant_docs = self.data_processor.search(
|
| 63 |
+
user_query,
|
| 64 |
+
num_results=3,
|
| 65 |
+
method=search_method,
|
| 66 |
+
index_name=index_name
|
| 67 |
+
)
|
| 68 |
|
| 69 |
if not relevant_docs:
|
| 70 |
logger.warning("No relevant documents found for the query.")
|
| 71 |
return "I couldn't find any relevant information to answer your query.", ""
|
| 72 |
|
| 73 |
prompt = self.get_prompt(user_query, relevant_docs)
|
| 74 |
+
answer = self.generate(prompt)
|
| 75 |
|
| 76 |
+
if not answer:
|
| 77 |
+
return "I encountered an error generating the response.", prompt
|
| 78 |
+
|
|
|
|
|
|
|
|
|
|
| 79 |
return answer, prompt
|
| 80 |
+
|
| 81 |
except Exception as e:
|
| 82 |
logger.error(f"An error occurred in the RAG system: {e}")
|
| 83 |
return f"An error occurred: {str(e)}", ""
|
| 84 |
|
| 85 |
def rewrite_cot(self, query):
|
| 86 |
+
prompt = f"""
|
| 87 |
+
Think through this step by step:
|
| 88 |
+
1. Original query: {query}
|
| 89 |
+
2. What are the key components of this query?
|
| 90 |
+
3. How can we break this down into a clearer question?
|
| 91 |
+
|
| 92 |
+
Rewritten query:
|
| 93 |
+
"""
|
| 94 |
response = self.generate(prompt)
|
| 95 |
if response:
|
| 96 |
return response, prompt
|
| 97 |
+
return query, prompt
|
| 98 |
|
| 99 |
def rewrite_react(self, query):
|
| 100 |
+
prompt = f"""
|
| 101 |
+
Let's approach this step-by-step:
|
| 102 |
+
1. Question: {query}
|
| 103 |
+
2. What information do we need?
|
| 104 |
+
3. What's the best way to structure this query?
|
| 105 |
+
|
| 106 |
+
Rewritten query:
|
| 107 |
+
"""
|
| 108 |
response = self.generate(prompt)
|
| 109 |
if response:
|
| 110 |
return response, prompt
|
| 111 |
+
return query, prompt
|