from sklearn.metrics.pairwise import cosine_similarity import numpy as np import pandas as pd import json import ollama class EvaluationSystem: def __init__(self, data_processor, database_handler): self.data_processor = data_processor self.db_handler = database_handler def relevance_scoring(self, query, retrieved_docs, top_k=5): query_embedding = self.data_processor.embedding_model.encode(query) doc_embeddings = [self.data_processor.embedding_model.encode(doc['content']) for doc in retrieved_docs] similarities = cosine_similarity([query_embedding], doc_embeddings)[0] return np.mean(sorted(similarities, reverse=True)[:top_k]) def answer_similarity(self, generated_answer, reference_answer): gen_embedding = self.data_processor.embedding_model.encode(generated_answer) ref_embedding = self.data_processor.embedding_model.encode(reference_answer) return cosine_similarity([gen_embedding], [ref_embedding])[0][0] def human_evaluation(self, video_id, query): with self.db_handler.conn: cursor = self.db_handler.conn.cursor() cursor.execute(''' SELECT AVG(feedback) FROM user_feedback WHERE video_id = ? AND query = ? ''', (video_id, query)) result = cursor.fetchone() return result[0] if result[0] is not None else 0 def evaluate_rag_performance(self, rag_system, test_queries, reference_answers, index_name): relevance_scores = [] similarity_scores = [] human_scores = [] for query, reference in zip(test_queries, reference_answers): retrieved_docs = rag_system.data_processor.search(query, num_results=5, method='hybrid', index_name=index_name) generated_answer, _ = rag_system.query(query, search_method='hybrid', index_name=index_name) relevance_scores.append(self.relevance_scoring(query, retrieved_docs)) similarity_scores.append(self.answer_similarity(generated_answer, reference)) human_scores.append(self.human_evaluation(index_name, query)) # Assuming index_name can be used as video_id return { "avg_relevance_score": np.mean(relevance_scores), "avg_similarity_score": np.mean(similarity_scores), "avg_human_score": np.mean(human_scores) } def llm_as_judge(self, question, generated_answer, prompt_template): prompt = prompt_template.format(question=question, answer_llm=generated_answer) try: response = ollama.chat( model='phi3.5', messages=[{"role": "user", "content": prompt}] ) evaluation = json.loads(response['message']['content']) return evaluation except Exception as e: print(f"Error in LLM evaluation: {str(e)}") return None def evaluate_rag(self, rag_system, ground_truth_file, sample_size=200, prompt_template=None): try: ground_truth = pd.read_csv(ground_truth_file) except FileNotFoundError: print("Ground truth file not found. Please generate ground truth data first.") return None sample = ground_truth.sample(n=min(sample_size, len(ground_truth)), random_state=1) evaluations = [] for _, row in sample.iterrows(): question = row['question'] video_id = row['video_id'] index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id) if not index_name: print(f"No index found for video {video_id}. Skipping this question.") continue try: answer_llm, _ = rag_system.query(question, search_method='hybrid', index_name=index_name) except ValueError as e: print(f"Error querying RAG system: {str(e)}") continue if prompt_template: evaluation = self.llm_as_judge(question, answer_llm, prompt_template) if evaluation: evaluations.append(( str(video_id), str(question), str(answer_llm), str(evaluation.get('Relevance', 'UNKNOWN')), str(evaluation.get('Explanation', 'No explanation provided')) )) else: # Fallback to cosine similarity if no prompt template is provided similarity = self.answer_similarity(answer_llm, row.get('reference_answer', '')) evaluations.append(( str(video_id), str(question), str(answer_llm), f"Similarity: {similarity}", "Cosine similarity used for evaluation" )) return evaluations