Spaces:
Running
Running
Commit
·
5d34f4c
0
Parent(s):
Proper root structure with app.py and requirements.txt
Browse files- .gitattributes +36 -0
- README.md +13 -0
- app.py +627 -0
- bkp1_app.py +567 -0
- bkp_app.py +497 -0
- cs_dataset/data-00000-of-00001.arrow +3 -0
- cs_dataset/dataset_info.json +12 -0
- cs_dataset/state.json +13 -0
- cs_index/faiss.index +3 -0
- fin_dataset/data-00000-of-00001.arrow +3 -0
- fin_dataset/dataset_info.json +12 -0
- fin_dataset/state.json +13 -0
- fin_index/faiss.index +3 -0
- gk_dataset/data-00000-of-00001.arrow +3 -0
- gk_dataset/dataset_info.json +12 -0
- gk_dataset/state.json +13 -0
- gk_index/faiss.index +3 -0
- legal_dataset/data-00000-of-00001.arrow +3 -0
- legal_dataset/dataset_info.json +12 -0
- legal_dataset/state.json +13 -0
- legal_index/faiss.index +3 -0
- med_dataset/data-00000-of-00001.arrow +3 -0
- med_dataset/dataset_info.json +12 -0
- med_dataset/state.json +13 -0
- med_index/faiss.index +3 -0
- requirements.txt +8 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.index filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Rag Eval Dashboard
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.36.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
short_description: RAGBench evalution
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_from_disk
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from datasets import load_from_disk
|
7 |
+
import faiss
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
from datasets import load_dataset, Dataset, get_dataset_config_names
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
from groq import Groq
|
13 |
+
from sentence_transformers import CrossEncoder
|
14 |
+
import requests
|
15 |
+
import uuid
|
16 |
+
import re
|
17 |
+
import json
|
18 |
+
import gradio as gr
|
19 |
+
import io
|
20 |
+
import sys
|
21 |
+
import traceback
|
22 |
+
|
23 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
24 |
+
|
25 |
+
def build_index_and_dataset(domain, subsets, embedder_type="sentence-transformers/all-MiniLM-L6-v2", legal=False):
|
26 |
+
dataset_path = f"{domain}_dataset"
|
27 |
+
index_path = f"{domain}_index/faiss.index"
|
28 |
+
|
29 |
+
# ❌ Always remove previous
|
30 |
+
if os.path.exists(dataset_path):
|
31 |
+
shutil.rmtree(dataset_path)
|
32 |
+
if os.path.exists(index_path):
|
33 |
+
os.remove(index_path)
|
34 |
+
|
35 |
+
print(f"🚀 Rebuilding dataset and index for domain: {domain}")
|
36 |
+
|
37 |
+
all_docs = []
|
38 |
+
for subset in subsets:
|
39 |
+
ds = load_dataset("rungalileo/ragbench", subset, split="test")
|
40 |
+
for item in ds:
|
41 |
+
if isinstance(item, dict) and "documents" in item and isinstance(item["documents"], list):
|
42 |
+
all_docs.extend(item["documents"])
|
43 |
+
elif isinstance(item, str):
|
44 |
+
all_docs.append(item)
|
45 |
+
all_docs = list(set(all_docs))
|
46 |
+
|
47 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=50)
|
48 |
+
chunks = []
|
49 |
+
for doc in all_docs:
|
50 |
+
chunks.extend(splitter.split_text(doc))
|
51 |
+
|
52 |
+
if legal:
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
|
54 |
+
model = AutoModel.from_pretrained("nlpaueb/legal-bert-base-uncased").to("cuda" if torch.cuda.is_available() else "cpu")
|
55 |
+
model.eval()
|
56 |
+
device = model.device
|
57 |
+
all_embeddings = []
|
58 |
+
for i in tqdm(range(0, len(chunks), 16), desc="Embedding Legal"):
|
59 |
+
batch = chunks[i:i+16]
|
60 |
+
inputs = tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
61 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
62 |
+
with torch.no_grad():
|
63 |
+
outputs = model(**inputs)
|
64 |
+
batch_embeddings = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
65 |
+
all_embeddings.append(batch_embeddings)
|
66 |
+
embeddings = np.vstack(all_embeddings)
|
67 |
+
else:
|
68 |
+
embedder = SentenceTransformer(embedder_type, device="cuda" if torch.cuda.is_available() else "cpu")
|
69 |
+
embeddings = embedder.encode(chunks, convert_to_numpy=True, show_progress_bar=True)
|
70 |
+
|
71 |
+
hf_dataset = Dataset.from_dict({"text": chunks})
|
72 |
+
dim = embeddings.shape[1]
|
73 |
+
faiss_index = faiss.IndexFlatL2(dim)
|
74 |
+
faiss_index.add(embeddings.astype("float32"))
|
75 |
+
|
76 |
+
os.makedirs(dataset_path, exist_ok=True)
|
77 |
+
os.makedirs(os.path.dirname(index_path), exist_ok=True)
|
78 |
+
|
79 |
+
hf_dataset.save_to_disk(dataset_path)
|
80 |
+
faiss.write_index(faiss_index, index_path)
|
81 |
+
|
82 |
+
print(f"✅ Saved {domain} dataset at {dataset_path}, index at {index_path}")
|
83 |
+
return hf_dataset, faiss_index
|
84 |
+
|
85 |
+
# 🔁 Always regenerate these indices and datasets at app start
|
86 |
+
RAGBENCH_SUBSETS_BY_DOMAIN = {
|
87 |
+
"legal": ["cuad"],
|
88 |
+
"med": ["pubmedqa"],
|
89 |
+
"gk": ["hotpotqa"],
|
90 |
+
"cs": ["emanual"],
|
91 |
+
"fin": ["finqa"]
|
92 |
+
}
|
93 |
+
|
94 |
+
hf_dataset_cs, faiss_index_cs = build_index_and_dataset("cs", RAGBENCH_SUBSETS_BY_DOMAIN["cs"])
|
95 |
+
hf_dataset_med, faiss_index_med = build_index_and_dataset("med", RAGBENCH_SUBSETS_BY_DOMAIN["med"])
|
96 |
+
hf_dataset_gk, faiss_index_gk = build_index_and_dataset("gk", RAGBENCH_SUBSETS_BY_DOMAIN["gk"])
|
97 |
+
hf_dataset_fin, faiss_index_fin = build_index_and_dataset("fin", RAGBENCH_SUBSETS_BY_DOMAIN["fin"])
|
98 |
+
hf_dataset_legal, faiss_index_legal = build_index_and_dataset("legal", RAGBENCH_SUBSETS_BY_DOMAIN["legal"], legal=True)
|
99 |
+
|
100 |
+
# Now load Hugging Face RAGBench datasets for GT
|
101 |
+
legal_dataset = load_dataset("rungalileo/ragbench", "cuad", split="test")
|
102 |
+
med_dataset = load_dataset("rungalileo/ragbench", "pubmedqa", split="test")
|
103 |
+
gk_dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split="test")
|
104 |
+
cs_dataset = load_dataset("rungalileo/ragbench", "emanual", split="test")
|
105 |
+
fin_dataset = load_dataset("rungalileo/ragbench", "finqa", split="test")
|
106 |
+
|
107 |
+
# Load BGE reranker
|
108 |
+
reranker = CrossEncoder("BAAI/bge-reranker-base", max_length=512)
|
109 |
+
|
110 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
111 |
+
model_name = "nlpaueb/legal-bert-base-uncased"
|
112 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
113 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
114 |
+
model.eval()
|
115 |
+
|
116 |
+
|
117 |
+
def retrieve_top_k(query,domain='legal', model_name='nlpaueb/legal-bert-base-uncased', k=8):
|
118 |
+
# Load tokenizer and model
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
120 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
121 |
+
model.eval()
|
122 |
+
|
123 |
+
#print(f"In retrive_top_k Query:{query}")
|
124 |
+
# Tokenize and embed query using mean pooling
|
125 |
+
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
126 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
127 |
+
with torch.no_grad():
|
128 |
+
outputs = model(**inputs)
|
129 |
+
query_embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
130 |
+
|
131 |
+
# Load FAISS index and dataset
|
132 |
+
index_path = f"legal_index/faiss.index"
|
133 |
+
dataset_path = f"legal_dataset"
|
134 |
+
|
135 |
+
faiss_index = faiss.read_index(index_path)
|
136 |
+
dataset = load_from_disk(dataset_path)
|
137 |
+
|
138 |
+
# Perform FAISS search
|
139 |
+
D, I = faiss_index.search(query_embedding.astype('float32'), k)
|
140 |
+
|
141 |
+
# Retrieve top-k matching chunks
|
142 |
+
top_chunks = [dataset[int(idx)]['text'] for idx in I[0]]
|
143 |
+
return top_chunks
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
# Retrieval function using preloaded objects
|
148 |
+
def retrieve_top_c(query, domain, embedder, k=5):
|
149 |
+
if domain == "CS":
|
150 |
+
hf_dataset = hf_dataset_cs
|
151 |
+
faiss_index = faiss_index_cs
|
152 |
+
elif domain == "Medical":
|
153 |
+
hf_dataset = hf_dataset_med
|
154 |
+
faiss_index = faiss_index_med
|
155 |
+
elif domain == "GK":
|
156 |
+
hf_dataset = hf_dataset_gk
|
157 |
+
faiss_index = faiss_index_gk
|
158 |
+
elif domain == "Finance":
|
159 |
+
hf_dataset = hf_dataset_fin
|
160 |
+
faiss_index = faiss_index_fin
|
161 |
+
else:
|
162 |
+
raise ValueError(f"Unknown domain: {domain}")
|
163 |
+
|
164 |
+
# Encode query and search
|
165 |
+
query_embedding = embedder.encode([query]).astype('float32')
|
166 |
+
#query_embedding = embedder.encode([query], convert_to_numpy=True).astype('float32')
|
167 |
+
distances, indices = faiss_index.search(query_embedding, k)
|
168 |
+
|
169 |
+
return [hf_dataset[int(i)]["text"] for i in indices[0]]
|
170 |
+
|
171 |
+
|
172 |
+
client = Groq(
|
173 |
+
api_key= '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',#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',
|
174 |
+
)
|
175 |
+
|
176 |
+
|
177 |
+
def rerank_documents_bge(query, documents, top_n=5, return_scores=False):
|
178 |
+
"""
|
179 |
+
Rerank documents using BAAI/bge-reranker-base CrossEncoder.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
query (str): The query string.
|
183 |
+
documents (List[str]): List of candidate documents.
|
184 |
+
top_n (int): Number of top results to return.
|
185 |
+
return_scores (bool): Whether to return scores along with documents.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
List[str] or List[Tuple[str, float]]
|
189 |
+
"""
|
190 |
+
if not documents:
|
191 |
+
return []
|
192 |
+
|
193 |
+
# Prepare (query, doc) pairs
|
194 |
+
pairs = [(query, doc) for doc in documents]
|
195 |
+
|
196 |
+
# Predict relevance scores
|
197 |
+
scores = reranker.predict(pairs, batch_size=16)
|
198 |
+
|
199 |
+
# Sort by score descending
|
200 |
+
reranked = sorted(zip(documents, scores), key=lambda x: x[1], reverse=True)
|
201 |
+
|
202 |
+
if return_scores:
|
203 |
+
return reranked[:top_n]
|
204 |
+
else:
|
205 |
+
return [doc for doc, _ in reranked[:top_n]]
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
def generate_response_rag(query,domain):
|
210 |
+
# Step 1: Retrieve top-k context chunks using your FAISS setup
|
211 |
+
if domain == "Legal":
|
212 |
+
top_chunks = retrieve_top_k(query,'Legal', model_name)
|
213 |
+
else:
|
214 |
+
top_chunks = retrieve_top_c(query, domain,embedder)
|
215 |
+
|
216 |
+
# Step 2: Rerank retrieved documents using cross-encoder
|
217 |
+
#reranked_chunks = rerank_documents(query, top_chunks, top_n=15)
|
218 |
+
#rerank_and_filter_chunks = filter_by_faithfulness(query, reranked_chunks)
|
219 |
+
#print("Retrieved Top chunks",top_chunks)
|
220 |
+
|
221 |
+
#reranked_chunks = rerank_and_filter_chunks
|
222 |
+
reranked_chunks_bge = rerank_documents_bge(query, top_chunks, top_n=5)
|
223 |
+
#sum_context = summarize_context("\n\n".join(reranked_chunks_bge))
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
final_context = reranked_chunks_bge
|
228 |
+
# Step 2: Prepare context and RAG-style prompt
|
229 |
+
context = "\n\n".join(final_context)
|
230 |
+
|
231 |
+
#print(f"Context:{context}")
|
232 |
+
prompt = f"""You are a helpful legal assistant.
|
233 |
+
Use the following context to answer the question.
|
234 |
+
Using only the information from the retrieved context, answer the following question. If the answer cannot be derived, say "I don't know." Always have answer with prefix **Answer:**
|
235 |
+
|
236 |
+
Context:{context}
|
237 |
+
|
238 |
+
Question: {query}
|
239 |
+
Answer:"""
|
240 |
+
|
241 |
+
# Step 3: Call the LLM (LLaMA3 or any chat model)
|
242 |
+
chat_completion = client.chat.completions.create(
|
243 |
+
messages=[
|
244 |
+
{"role": "user", "content": prompt}
|
245 |
+
],
|
246 |
+
model="llama3-70b-8192",#"gemma2-9b-it"#"qwen/qwen3-32b"#deepseek-r1-distill-llama-70b",#"llama3-70b-8192", # mistral-saba-24b
|
247 |
+
temperature=0.0
|
248 |
+
)
|
249 |
+
|
250 |
+
return context,chat_completion.choices[0].message.content.strip()
|
251 |
+
|
252 |
+
'''response = openai.chat.completions.create(
|
253 |
+
model="gpt-3.5-turbo",
|
254 |
+
messages=[
|
255 |
+
{"role": "user", "content": prompt}
|
256 |
+
],
|
257 |
+
temperature=0.0,
|
258 |
+
max_tokens=1024
|
259 |
+
)
|
260 |
+
|
261 |
+
return response.choices[0].message.content'''
|
262 |
+
|
263 |
+
#JUDGE LLM
|
264 |
+
|
265 |
+
|
266 |
+
def split_into_keyed_sentences(text, prefix):
|
267 |
+
"""Splits text into sentences with keys like '0a.', '0b.', or 'a.', 'b.', etc."""
|
268 |
+
# Basic sentence tokenizer with keys
|
269 |
+
sentences = re.split(r'(?<=[.?!])\s+', text.strip())
|
270 |
+
keyed = {}
|
271 |
+
for i, s in enumerate(sentences):
|
272 |
+
key = f"{prefix}{chr(97 + i)}" # 'a', 'b', ...
|
273 |
+
if s:
|
274 |
+
keyed[key] = s.strip()
|
275 |
+
return keyed
|
276 |
+
|
277 |
+
|
278 |
+
def jugde_response_rag(query, domain):
|
279 |
+
|
280 |
+
#top_chunks = retrieve_top_k(query)
|
281 |
+
|
282 |
+
#top_chunks = [chunk[0] if isinstance(chunk, tuple) else chunk for chunk in top_chunks]
|
283 |
+
|
284 |
+
# Step 2: Prepare context and RAG-style prompt
|
285 |
+
#context = "\n\n".join(top_chunks)
|
286 |
+
|
287 |
+
# Split context and dummy answer into keyed sentences
|
288 |
+
#document_keys = split_into_keyed_sentences(context, "0")
|
289 |
+
|
290 |
+
#print(f"Query:{query}\n====================================================================")
|
291 |
+
context,response = generate_response_rag(query,domain) #deepseek-r1-distill-llama-70b llama3-70b-8192
|
292 |
+
|
293 |
+
# Split context and dummy answer into keyed sentences
|
294 |
+
document_keys = split_into_keyed_sentences(context, "0")
|
295 |
+
#print(f"\n====================================\Generator Response:{response}")
|
296 |
+
#For deepseek
|
297 |
+
#print("Before Curated:",response)
|
298 |
+
response=response[response.find("**Answer"):].replace("**Answer","");
|
299 |
+
|
300 |
+
print(f"Response for Generator LLM:{response}")
|
301 |
+
|
302 |
+
response_keys = split_into_keyed_sentences(response, "")
|
303 |
+
# Rebuild sections for prompt
|
304 |
+
documents_formatted = "\n".join([f"{k}. {v}" for k, v in document_keys.items()])
|
305 |
+
response_formatted = "\n".join([f"{k}. {v}" for k, v in response_keys.items()])
|
306 |
+
|
307 |
+
'''print(f"\n====================================================================")
|
308 |
+
print(f"documents_formatted:{documents_formatted}")
|
309 |
+
print(f"\n====================================================================")
|
310 |
+
print(f"response_formatted:{response_formatted}")
|
311 |
+
print(f"\n====================================================================")'''
|
312 |
+
|
313 |
+
|
314 |
+
prompt = f"""I asked someone to answer a question based on one or more documents.
|
315 |
+
Your task is to review their response and assess whether or not each sentence
|
316 |
+
in that response is supported by text in the documents. And if so, which
|
317 |
+
sentences in the documents provide that support. You will also tell me which
|
318 |
+
of the documents contain useful information for answering the question, and
|
319 |
+
which of the documents the answer was sourced from.
|
320 |
+
Here are the documents, each of which is split into sentences. Alongside each
|
321 |
+
sentence is associated key, such as ’0a.’ or ’0b.’ that you can use to refer
|
322 |
+
to it:
|
323 |
+
'''
|
324 |
+
{documents_formatted}
|
325 |
+
'''
|
326 |
+
The question was:
|
327 |
+
'''
|
328 |
+
{query}
|
329 |
+
'''
|
330 |
+
Here is their response, split into sentences. Alongside each sentence is
|
331 |
+
associated key, such as ’a.’ or ’b.’ that you can use to refer to it. Note
|
332 |
+
that these keys are unique to the response, and are not related to the keys
|
333 |
+
in the documents:
|
334 |
+
'''
|
335 |
+
{response_formatted}
|
336 |
+
'''
|
337 |
+
You must respond with a JSON object matching this schema:
|
338 |
+
'''
|
339 |
+
{{
|
340 |
+
"relevance_explanation": string,
|
341 |
+
"all_relevant_sentence_keys": [string],
|
342 |
+
"overall_supported_explanation": string,
|
343 |
+
"overall_supported": boolean,
|
344 |
+
"sentence_support_information": [
|
345 |
+
{{
|
346 |
+
"response_sentence_key": string,
|
347 |
+
"explanation": string,
|
348 |
+
"supporting_sentence_keys": [string],
|
349 |
+
"fully_supported": boolean
|
350 |
+
}},
|
351 |
+
],
|
352 |
+
"all_utilized_sentence_keys": [string]
|
353 |
+
}}
|
354 |
+
'''
|
355 |
+
The relevance_explanation field is a string explaining which documents
|
356 |
+
contain useful information for answering the question. Provide a step-by-step
|
357 |
+
breakdown of information provided in the documents and how it is useful for
|
358 |
+
answering the question.
|
359 |
+
The all_relevant_sentence_keys field is a list of all document sentences keys
|
360 |
+
(e.g. ’0a’) that are revant to the question. Include every sentence that is
|
361 |
+
useful and relevant to the question, even if it was not used in the response,
|
362 |
+
or if only parts of the sentence are useful. Ignore the provided response when
|
363 |
+
making this judgement and base your judgement solely on the provided documents
|
364 |
+
and question. Omit sentences that, if removed from the document, would not
|
365 |
+
impact someone’s ability to answer the question.
|
366 |
+
The overall_supported_explanation field is a string explaining why the response
|
367 |
+
*as a whole* is or is not supported by the documents. In this field, provide a
|
368 |
+
step-by-step breakdown of the claims made in the response and the support (or
|
369 |
+
lack thereof) for those claims in the documents. Begin by assessing each claim
|
370 |
+
separately, one by one; don’t make any remarks about the response as a whole
|
371 |
+
until you have assessed all the claims in isolation.
|
372 |
+
The overall_supported field is a boolean indicating whether the response as a
|
373 |
+
whole is supported by the documents. This value should reflect the conclusion
|
374 |
+
you drew at the end of your step-by-step breakdown in overall_supported_explanation.
|
375 |
+
In the sentence_support_information field, provide information about the support
|
376 |
+
*for each sentence* in the response.
|
377 |
+
The sentence_support_information field is a list of objects, one for each sentence
|
378 |
+
in the response. Each object MUST have the following fields:
|
379 |
+
- response_sentence_key: a string identifying the sentence in the response.
|
380 |
+
This key is the same as the one used in the response above.
|
381 |
+
- explanation: a string explaining why the sentence is or is not supported by the
|
382 |
+
documents.
|
383 |
+
- supporting_sentence_keys: keys (e.g. ’0a’) of sentences from the documents that
|
384 |
+
support the response sentence. If the sentence is not supported, this list MUST
|
385 |
+
be empty. If the sentence is supported, this list MUST contain one or more keys.
|
386 |
+
In special cases where the sentence is supported, but not by any specific sentence,
|
387 |
+
you can use the string "supported_without_sentence" to indicate that the sentence
|
388 |
+
is generally supported by the documents. Consider cases where the sentence is
|
389 |
+
expressing inability to answer the question due to lack of relevant information in
|
390 |
+
the provided contex as "supported_without_sentence". In cases where the sentence
|
391 |
+
is making a general statement (e.g. outlining the steps to produce an answer, or
|
392 |
+
summarizing previously stated sentences, or a transition sentence), use the
|
393 |
+
sting "general".In cases where the sentence is correctly stating a well-known fact,
|
394 |
+
like a mathematical formula, use the string "well_known_fact". In cases where the
|
395 |
+
sentence is performing numerical reasoning (e.g. addition, multiplication), use
|
396 |
+
the string "numerical_reasoning".
|
397 |
+
- fully_supported: a boolean indicating whether the sentence is fully supported by
|
398 |
+
the documents.
|
399 |
+
- This value should reflect the conclusion you drew at the end of your step-by-step
|
400 |
+
breakdown in explanation.
|
401 |
+
- If supporting_sentence_keys is an empty list, then fully_supported must be false.
|
402 |
+
17
|
403 |
+
- Otherwise, use fully_supported to clarify whether everything in the response
|
404 |
+
sentence is fully supported by the document text indicated in supporting_sentence_keys
|
405 |
+
(fully_supported = true), or whether the sentence is only partially or incompletely
|
406 |
+
supported by that document text (fully_supported = false).
|
407 |
+
The all_utilized_sentence_keys field is a list of all sentences keys (e.g. ’0a’) that
|
408 |
+
were used to construct the answer. Include every sentence that either directly supported
|
409 |
+
the answer, or was implicitly used to construct the answer, even if it was not used
|
410 |
+
in its entirety. Omit sentences that were not used, and could have been removed from
|
411 |
+
the documents without affecting the answer.
|
412 |
+
You must respond with a valid JSON string. Use escapes for quotes, e.g. ‘\\"‘, and
|
413 |
+
newlines, e.g. ‘\\n‘. Do not write anything before or after the JSON string. Do not
|
414 |
+
wrap the JSON string in backticks like ‘‘‘ or ‘‘‘json.
|
415 |
+
As a reminder: your task is to review the response and assess which documents contain
|
416 |
+
useful information pertaining to the question, and how each sentence in the response
|
417 |
+
is supported by the text in the documents.\
|
418 |
+
"""
|
419 |
+
|
420 |
+
# Step 3: Call the LLM
|
421 |
+
chat_completion = client.chat.completions.create(
|
422 |
+
messages=[
|
423 |
+
{"role": "user", "content": prompt}
|
424 |
+
],
|
425 |
+
model="meta-llama/llama-4-maverick-17b-128e-instruct", #deepseek-r1-distill-llama-70b llama3-70b-8192 meta-llama/llama-4-maverick-17b-128e-instruct
|
426 |
+
)
|
427 |
+
|
428 |
+
return documents_formatted,chat_completion.choices[0].message.content.strip()
|
429 |
+
|
430 |
+
'''chat_completion = openai.chat.completions.create(
|
431 |
+
messages=[
|
432 |
+
{"role":"user",
|
433 |
+
"content":prompt}
|
434 |
+
],
|
435 |
+
model="gpt-4o",
|
436 |
+
max_tokens=1024,
|
437 |
+
|
438 |
+
)
|
439 |
+
return documents_formatted,chat_completion.choices[0].message.content'''
|
440 |
+
|
441 |
+
|
442 |
+
def extract_retrieved_sentence_keys(document_text: str) -> list[str]:
|
443 |
+
"""
|
444 |
+
Extracts sentence keys like '0a.', '0b.', etc. from a formatted document string.
|
445 |
+
|
446 |
+
Parameters:
|
447 |
+
- document_text (str): full text of document with sentence keys
|
448 |
+
|
449 |
+
Returns:
|
450 |
+
- List of unique sentence keys in the order they appear
|
451 |
+
"""
|
452 |
+
# Match pattern like 0a., 0b., 0z., 0{., 0|., etc.
|
453 |
+
pattern = r'\b0[\w\{\|\}~]\.'
|
454 |
+
|
455 |
+
matches = re.findall(pattern, document_text)
|
456 |
+
return list(dict.fromkeys(matches)) # Removes duplicates while preserving order
|
457 |
+
|
458 |
+
def compute_ragbench_metrics(judge_response: dict, retrieved_sentence_keys: list[str]) -> dict:
|
459 |
+
"""
|
460 |
+
Computes RAGBench-style metrics from Judge LLM response.
|
461 |
+
|
462 |
+
Parameters:
|
463 |
+
- judge_response (dict): JSON response from Judge LLM
|
464 |
+
- retrieved_sentence_keys (list of str): all sentence keys from the retrieved documents
|
465 |
+
|
466 |
+
Returns:
|
467 |
+
- Dictionary with Context Relevance, Context Utilization, Completeness, and Adherence
|
468 |
+
"""
|
469 |
+
|
470 |
+
R = set(judge_response.get("all_relevant_sentence_keys", [])) # Relevant sentences
|
471 |
+
U = set(judge_response.get("all_utilized_sentence_keys", [])) # Utilized sentences
|
472 |
+
intersection_RU = R & U
|
473 |
+
|
474 |
+
total_retrieved = len(retrieved_sentence_keys)
|
475 |
+
len_R = len(R)
|
476 |
+
len_U = len(U)
|
477 |
+
len_intersection = len(intersection_RU)
|
478 |
+
|
479 |
+
# Context Relevance: fraction of retrieved context that is relevant
|
480 |
+
context_relevance = len_R / total_retrieved if total_retrieved else 0.0
|
481 |
+
|
482 |
+
# Context Utilization: fraction of retrieved context that was used
|
483 |
+
context_utilization = len_U / total_retrieved if total_retrieved else 0.0
|
484 |
+
|
485 |
+
# Completeness: fraction of relevant content that was used
|
486 |
+
completeness = len_intersection / len_R if len_R else 0.0
|
487 |
+
|
488 |
+
# Adherence: 1 if all response sentences are fully supported, else 0
|
489 |
+
is_fully_supported = all(s.get("fully_supported", False)
|
490 |
+
for s in judge_response.get("sentence_support_information", []))
|
491 |
+
adherence = 1.0 if is_fully_supported and judge_response.get("overall_supported", False) else 0.0
|
492 |
+
|
493 |
+
return {
|
494 |
+
"Context Relevance": round(context_relevance, 4),
|
495 |
+
"Context Utilization": round(context_utilization, 4),
|
496 |
+
"Completeness": round(completeness, 4),
|
497 |
+
"Adherence": adherence
|
498 |
+
}
|
499 |
+
|
500 |
+
|
501 |
+
def evaluate_rag_pipeline(domain, q_indices):
|
502 |
+
import torch
|
503 |
+
import numpy as np
|
504 |
+
from sklearn.metrics import mean_squared_error, roc_auc_score
|
505 |
+
|
506 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
507 |
+
|
508 |
+
def safe_append(gt_list, pred_list, gt_val, pred_val):
|
509 |
+
if gt_val is not None and pred_val is not None:
|
510 |
+
gt_list.append(gt_val)
|
511 |
+
pred_list.append(pred_val)
|
512 |
+
|
513 |
+
def clean_and_parse_json_block(text):
|
514 |
+
# Strip markdown-style code block if present
|
515 |
+
#text = text.strip().strip("`").strip()
|
516 |
+
code_block_match = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", text)
|
517 |
+
if code_block_match:
|
518 |
+
text = code_block_match.group(1).strip()
|
519 |
+
|
520 |
+
# Remove invalid/control characters that break decoding
|
521 |
+
text = re.sub(r"[^\x20-\x7E\n\t]", "", text)
|
522 |
+
|
523 |
+
try:
|
524 |
+
return json.loads(text)
|
525 |
+
except json.JSONDecodeError as e:
|
526 |
+
print("❌ JSON Decode Error:", e)
|
527 |
+
print("⚠️ Cleaned text:\n", text)
|
528 |
+
raise
|
529 |
+
|
530 |
+
|
531 |
+
gt_relevance, pred_relevance = [], []
|
532 |
+
gt_utilization, pred_utilization = [], []
|
533 |
+
gt_completeness, pred_completeness = [], []
|
534 |
+
gt_adherence, pred_adherence = [], []
|
535 |
+
|
536 |
+
if(domain=="Legal"):
|
537 |
+
dataset = legal_dataset
|
538 |
+
elif(domain=="Medical"):
|
539 |
+
dataset = med_dataset
|
540 |
+
elif(domain=="GK"):
|
541 |
+
dataset = gk_dataset
|
542 |
+
elif(domain=="CS"):
|
543 |
+
dataset = cs_dataset
|
544 |
+
elif(domain=="Finance"):
|
545 |
+
dataset = fin_dataset
|
546 |
+
|
547 |
+
for i in q_indices:
|
548 |
+
query = dataset[i]['question']
|
549 |
+
print(f"\n\n\nQuery:{i}.{query}\n====================================================================")
|
550 |
+
#print(f"\ndomain:{domain}====================================================================")
|
551 |
+
documents_formatted, response = jugde_response_rag(query, domain)
|
552 |
+
judge_response = clean_and_parse_json_block(response)
|
553 |
+
print(f"\ndocuments_formatted:{documents_formatted}")
|
554 |
+
print(f"\n======================================================================\nResponse:{judge_response}")
|
555 |
+
retrieved_sentences = extract_retrieved_sentence_keys(documents_formatted)
|
556 |
+
predicted = compute_ragbench_metrics(judge_response, retrieved_sentences)
|
557 |
+
|
558 |
+
# GT values
|
559 |
+
gt_r = dataset[i].get('relevance_score')
|
560 |
+
gt_u = dataset[i].get('utilization_score')
|
561 |
+
gt_c = dataset[i].get('completeness_score')
|
562 |
+
gt_a = dataset[i].get('gpt3_adherence')
|
563 |
+
|
564 |
+
safe_append(gt_relevance, pred_relevance, gt_r, predicted['Context Relevance'])
|
565 |
+
safe_append(gt_utilization, pred_utilization, gt_u, predicted['Context Utilization'])
|
566 |
+
safe_append(gt_completeness, pred_completeness, gt_c, predicted['Completeness'])
|
567 |
+
if gt_a is not None and predicted['Adherence'] is not None:
|
568 |
+
safe_append(gt_adherence, pred_adherence, int(gt_a), int(predicted['Adherence']))
|
569 |
+
|
570 |
+
def compute_rmse(gt, pred):
|
571 |
+
return round(np.sqrt(np.mean((np.array(gt) - np.array(pred)) ** 2)), 4)
|
572 |
+
|
573 |
+
result = {
|
574 |
+
"Context Relevance": compute_rmse(gt_relevance, pred_relevance),
|
575 |
+
"Context Utilization": compute_rmse(gt_utilization, pred_utilization),
|
576 |
+
"Completeness": compute_rmse(gt_completeness, pred_completeness),
|
577 |
+
}
|
578 |
+
|
579 |
+
if len(set(gt_adherence)) == 2:
|
580 |
+
result["Adherence"] = compute_rmse(gt_adherence, pred_adherence)
|
581 |
+
result["AUC-ROC (Adherence)"] = round(roc_auc_score(gt_adherence, pred_adherence), 4)
|
582 |
+
else:
|
583 |
+
result["Adherence"] = compute_rmse(gt_adherence, pred_adherence)
|
584 |
+
result["AUC-ROC (Adherence)"] = "N/A - one class only"
|
585 |
+
|
586 |
+
return result
|
587 |
+
|
588 |
+
|
589 |
+
|
590 |
+
# Updated wrapper
|
591 |
+
def evaluate_rag_gradio(domain, q_indices_str):
|
592 |
+
# Capture logs
|
593 |
+
log_stream = io.StringIO()
|
594 |
+
sys.stdout = log_stream
|
595 |
+
|
596 |
+
try:
|
597 |
+
# Parse comma-separated indices
|
598 |
+
q_indices = [int(x.strip()) for x in q_indices_str.split(",") if x.strip().isdigit()]
|
599 |
+
results = evaluate_rag_pipeline(domain, q_indices)
|
600 |
+
|
601 |
+
logs = log_stream.getvalue()
|
602 |
+
return results, logs
|
603 |
+
|
604 |
+
except Exception as e:
|
605 |
+
traceback.print_exc()
|
606 |
+
return {"error": str(e)}, log_stream.getvalue()
|
607 |
+
|
608 |
+
finally:
|
609 |
+
sys.stdout = sys.__stdout__ # Restore stdout
|
610 |
+
|
611 |
+
# Gradio interface
|
612 |
+
iface = gr.Interface(
|
613 |
+
fn=evaluate_rag_gradio,
|
614 |
+
inputs=[
|
615 |
+
gr.Dropdown(choices=["Legal", "Medical", "GK", "CS", "Finance"], label="Domain"),
|
616 |
+
gr.Textbox(label="Comma-separated Query Indices (e.g. 89,121,245)", lines=1),
|
617 |
+
],
|
618 |
+
outputs=[
|
619 |
+
gr.JSON(label="Evaluation Metrics (RMSE & AUC-ROC)"),
|
620 |
+
gr.Textbox(label="Execution Log", lines=10, interactive=True),
|
621 |
+
],
|
622 |
+
title="RAG Evaluation Dashboard",
|
623 |
+
description="Evaluate your RAG pipeline across selected queries using GPT-based generation and judgment."
|
624 |
+
)
|
625 |
+
|
626 |
+
# Launch app
|
627 |
+
iface.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
bkp1_app.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_from_disk
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from datasets import load_from_disk
|
7 |
+
import faiss
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
from datasets import load_dataset, Dataset, get_dataset_config_names
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
from groq import Groq
|
13 |
+
from sentence_transformers import CrossEncoder
|
14 |
+
import requests
|
15 |
+
import uuid
|
16 |
+
import re
|
17 |
+
import json
|
18 |
+
import gradio as gr
|
19 |
+
import io
|
20 |
+
import sys
|
21 |
+
import traceback
|
22 |
+
|
23 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
24 |
+
# Preload datasets and indices
|
25 |
+
hf_dataset_cs = load_from_disk("cs_dataset")
|
26 |
+
faiss_index_cs = faiss.read_index("cs_index/faiss.index")
|
27 |
+
|
28 |
+
hf_dataset_med = load_from_disk("med_dataset")
|
29 |
+
faiss_index_med = faiss.read_index("med_index/faiss.index")
|
30 |
+
|
31 |
+
hf_dataset_gk = load_from_disk("gk_dataset")
|
32 |
+
faiss_index_gk = faiss.read_index("gk_index/faiss.index")
|
33 |
+
|
34 |
+
hf_dataset_fin = load_from_disk("fin_dataset")
|
35 |
+
faiss_index_fin = faiss.read_index("fin_index/faiss.index")
|
36 |
+
|
37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
print(device)
|
39 |
+
|
40 |
+
|
41 |
+
legal_dataset = load_dataset("rungalileo/ragbench", "cuad", split="test")
|
42 |
+
med_dataset = load_dataset("rungalileo/ragbench", "pubmedqa", split="test")
|
43 |
+
gk_dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split="test")
|
44 |
+
cs_dataset = load_dataset("rungalileo/ragbench", "emanual", split="test")
|
45 |
+
fin_dataset = load_dataset("rungalileo/ragbench", "finqa", split="test")
|
46 |
+
|
47 |
+
# Load BGE reranker
|
48 |
+
reranker = CrossEncoder("BAAI/bge-reranker-base", max_length=512)
|
49 |
+
|
50 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
51 |
+
model_name = "nlpaueb/legal-bert-base-uncased"
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
53 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
54 |
+
model.eval()
|
55 |
+
|
56 |
+
|
57 |
+
def retrieve_top_k(query,domain='legal', model_name='nlpaueb/legal-bert-base-uncased', k=8):
|
58 |
+
# Load tokenizer and model
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
60 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
61 |
+
model.eval()
|
62 |
+
|
63 |
+
#print(f"In retrive_top_k Query:{query}")
|
64 |
+
# Tokenize and embed query using mean pooling
|
65 |
+
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
66 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model(**inputs)
|
69 |
+
query_embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
70 |
+
|
71 |
+
# Load FAISS index and dataset
|
72 |
+
index_path = f"legal_index/faiss.index"
|
73 |
+
dataset_path = f"legal_dataset"
|
74 |
+
|
75 |
+
faiss_index = faiss.read_index(index_path)
|
76 |
+
dataset = load_from_disk(dataset_path)
|
77 |
+
|
78 |
+
# Perform FAISS search
|
79 |
+
D, I = faiss_index.search(query_embedding.astype('float32'), k)
|
80 |
+
|
81 |
+
# Retrieve top-k matching chunks
|
82 |
+
top_chunks = [dataset[int(idx)]['text'] for idx in I[0]]
|
83 |
+
return top_chunks
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
# Retrieval function using preloaded objects
|
88 |
+
def retrieve_top_c(query, domain, embedder, k=5):
|
89 |
+
if domain == "CS":
|
90 |
+
hf_dataset = hf_dataset_cs
|
91 |
+
faiss_index = faiss_index_cs
|
92 |
+
elif domain == "Medical":
|
93 |
+
hf_dataset = hf_dataset_med
|
94 |
+
faiss_index = faiss_index_med
|
95 |
+
elif domain == "GK":
|
96 |
+
hf_dataset = hf_dataset_gk
|
97 |
+
faiss_index = faiss_index_gk
|
98 |
+
elif domain == "Finance":
|
99 |
+
hf_dataset = hf_dataset_fin
|
100 |
+
faiss_index = faiss_index_fin
|
101 |
+
else:
|
102 |
+
raise ValueError(f"Unknown domain: {domain}")
|
103 |
+
|
104 |
+
# Encode query and search
|
105 |
+
query_embedding = embedder.encode([query]).astype('float32')
|
106 |
+
#query_embedding = embedder.encode([query], convert_to_numpy=True).astype('float32')
|
107 |
+
distances, indices = faiss_index.search(query_embedding, k)
|
108 |
+
|
109 |
+
return [hf_dataset[int(i)]["text"] for i in indices[0]]
|
110 |
+
|
111 |
+
|
112 |
+
client = Groq(
|
113 |
+
api_key= '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',#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',
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
def rerank_documents_bge(query, documents, top_n=5, return_scores=False):
|
118 |
+
"""
|
119 |
+
Rerank documents using BAAI/bge-reranker-base CrossEncoder.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
query (str): The query string.
|
123 |
+
documents (List[str]): List of candidate documents.
|
124 |
+
top_n (int): Number of top results to return.
|
125 |
+
return_scores (bool): Whether to return scores along with documents.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
List[str] or List[Tuple[str, float]]
|
129 |
+
"""
|
130 |
+
if not documents:
|
131 |
+
return []
|
132 |
+
|
133 |
+
# Prepare (query, doc) pairs
|
134 |
+
pairs = [(query, doc) for doc in documents]
|
135 |
+
|
136 |
+
# Predict relevance scores
|
137 |
+
scores = reranker.predict(pairs, batch_size=16)
|
138 |
+
|
139 |
+
# Sort by score descending
|
140 |
+
reranked = sorted(zip(documents, scores), key=lambda x: x[1], reverse=True)
|
141 |
+
|
142 |
+
if return_scores:
|
143 |
+
return reranked[:top_n]
|
144 |
+
else:
|
145 |
+
return [doc for doc, _ in reranked[:top_n]]
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
def generate_response_rag(query,domain):
|
150 |
+
# Step 1: Retrieve top-k context chunks using your FAISS setup
|
151 |
+
if domain == "Legal":
|
152 |
+
top_chunks = retrieve_top_k(query,'Legal', model_name)
|
153 |
+
else:
|
154 |
+
top_chunks = retrieve_top_c(query, domain,embedder)
|
155 |
+
|
156 |
+
# Step 2: Rerank retrieved documents using cross-encoder
|
157 |
+
#reranked_chunks = rerank_documents(query, top_chunks, top_n=15)
|
158 |
+
#rerank_and_filter_chunks = filter_by_faithfulness(query, reranked_chunks)
|
159 |
+
#print("Retrieved Top chunks",top_chunks)
|
160 |
+
|
161 |
+
#reranked_chunks = rerank_and_filter_chunks
|
162 |
+
reranked_chunks_bge = rerank_documents_bge(query, top_chunks, top_n=5)
|
163 |
+
#sum_context = summarize_context("\n\n".join(reranked_chunks_bge))
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
final_context = reranked_chunks_bge
|
168 |
+
# Step 2: Prepare context and RAG-style prompt
|
169 |
+
context = "\n\n".join(final_context)
|
170 |
+
|
171 |
+
#print(f"Context:{context}")
|
172 |
+
prompt = f"""You are a helpful legal assistant.
|
173 |
+
Use the following context to answer the question.
|
174 |
+
Using only the information from the retrieved context, answer the following question. If the answer cannot be derived, say "I don't know." Always have answer with prefix **Answer:**
|
175 |
+
|
176 |
+
Context:{context}
|
177 |
+
|
178 |
+
Question: {query}
|
179 |
+
Answer:"""
|
180 |
+
|
181 |
+
# Step 3: Call the LLM (LLaMA3 or any chat model)
|
182 |
+
chat_completion = client.chat.completions.create(
|
183 |
+
messages=[
|
184 |
+
{"role": "user", "content": prompt}
|
185 |
+
],
|
186 |
+
model="llama3-70b-8192",#"gemma2-9b-it"#"qwen/qwen3-32b"#deepseek-r1-distill-llama-70b",#"llama3-70b-8192", # mistral-saba-24b
|
187 |
+
temperature=0.0
|
188 |
+
)
|
189 |
+
|
190 |
+
return context,chat_completion.choices[0].message.content.strip()
|
191 |
+
|
192 |
+
'''response = openai.chat.completions.create(
|
193 |
+
model="gpt-3.5-turbo",
|
194 |
+
messages=[
|
195 |
+
{"role": "user", "content": prompt}
|
196 |
+
],
|
197 |
+
temperature=0.0,
|
198 |
+
max_tokens=1024
|
199 |
+
)
|
200 |
+
|
201 |
+
return response.choices[0].message.content'''
|
202 |
+
|
203 |
+
#JUDGE LLM
|
204 |
+
|
205 |
+
|
206 |
+
def split_into_keyed_sentences(text, prefix):
|
207 |
+
"""Splits text into sentences with keys like '0a.', '0b.', or 'a.', 'b.', etc."""
|
208 |
+
# Basic sentence tokenizer with keys
|
209 |
+
sentences = re.split(r'(?<=[.?!])\s+', text.strip())
|
210 |
+
keyed = {}
|
211 |
+
for i, s in enumerate(sentences):
|
212 |
+
key = f"{prefix}{chr(97 + i)}" # 'a', 'b', ...
|
213 |
+
if s:
|
214 |
+
keyed[key] = s.strip()
|
215 |
+
return keyed
|
216 |
+
|
217 |
+
|
218 |
+
def jugde_response_rag(query, domain):
|
219 |
+
|
220 |
+
#top_chunks = retrieve_top_k(query)
|
221 |
+
|
222 |
+
#top_chunks = [chunk[0] if isinstance(chunk, tuple) else chunk for chunk in top_chunks]
|
223 |
+
|
224 |
+
# Step 2: Prepare context and RAG-style prompt
|
225 |
+
#context = "\n\n".join(top_chunks)
|
226 |
+
|
227 |
+
# Split context and dummy answer into keyed sentences
|
228 |
+
#document_keys = split_into_keyed_sentences(context, "0")
|
229 |
+
|
230 |
+
#print(f"Query:{query}\n====================================================================")
|
231 |
+
context,response = generate_response_rag(query,domain) #deepseek-r1-distill-llama-70b llama3-70b-8192
|
232 |
+
|
233 |
+
# Split context and dummy answer into keyed sentences
|
234 |
+
document_keys = split_into_keyed_sentences(context, "0")
|
235 |
+
#print(f"\n====================================\Generator Response:{response}")
|
236 |
+
#For deepseek
|
237 |
+
#print("Before Curated:",response)
|
238 |
+
response=response[response.find("**Answer"):].replace("**Answer","");
|
239 |
+
|
240 |
+
print(f"Response for Generator LLM:{response}")
|
241 |
+
|
242 |
+
response_keys = split_into_keyed_sentences(response, "")
|
243 |
+
# Rebuild sections for prompt
|
244 |
+
documents_formatted = "\n".join([f"{k}. {v}" for k, v in document_keys.items()])
|
245 |
+
response_formatted = "\n".join([f"{k}. {v}" for k, v in response_keys.items()])
|
246 |
+
|
247 |
+
'''print(f"\n====================================================================")
|
248 |
+
print(f"documents_formatted:{documents_formatted}")
|
249 |
+
print(f"\n====================================================================")
|
250 |
+
print(f"response_formatted:{response_formatted}")
|
251 |
+
print(f"\n====================================================================")'''
|
252 |
+
|
253 |
+
|
254 |
+
prompt = f"""I asked someone to answer a question based on one or more documents.
|
255 |
+
Your task is to review their response and assess whether or not each sentence
|
256 |
+
in that response is supported by text in the documents. And if so, which
|
257 |
+
sentences in the documents provide that support. You will also tell me which
|
258 |
+
of the documents contain useful information for answering the question, and
|
259 |
+
which of the documents the answer was sourced from.
|
260 |
+
Here are the documents, each of which is split into sentences. Alongside each
|
261 |
+
sentence is associated key, such as ’0a.’ or ’0b.’ that you can use to refer
|
262 |
+
to it:
|
263 |
+
'''
|
264 |
+
{documents_formatted}
|
265 |
+
'''
|
266 |
+
The question was:
|
267 |
+
'''
|
268 |
+
{query}
|
269 |
+
'''
|
270 |
+
Here is their response, split into sentences. Alongside each sentence is
|
271 |
+
associated key, such as ’a.’ or ’b.’ that you can use to refer to it. Note
|
272 |
+
that these keys are unique to the response, and are not related to the keys
|
273 |
+
in the documents:
|
274 |
+
'''
|
275 |
+
{response_formatted}
|
276 |
+
'''
|
277 |
+
You must respond with a JSON object matching this schema:
|
278 |
+
'''
|
279 |
+
{{
|
280 |
+
"relevance_explanation": string,
|
281 |
+
"all_relevant_sentence_keys": [string],
|
282 |
+
"overall_supported_explanation": string,
|
283 |
+
"overall_supported": boolean,
|
284 |
+
"sentence_support_information": [
|
285 |
+
{{
|
286 |
+
"response_sentence_key": string,
|
287 |
+
"explanation": string,
|
288 |
+
"supporting_sentence_keys": [string],
|
289 |
+
"fully_supported": boolean
|
290 |
+
}},
|
291 |
+
],
|
292 |
+
"all_utilized_sentence_keys": [string]
|
293 |
+
}}
|
294 |
+
'''
|
295 |
+
The relevance_explanation field is a string explaining which documents
|
296 |
+
contain useful information for answering the question. Provide a step-by-step
|
297 |
+
breakdown of information provided in the documents and how it is useful for
|
298 |
+
answering the question.
|
299 |
+
The all_relevant_sentence_keys field is a list of all document sentences keys
|
300 |
+
(e.g. ’0a’) that are revant to the question. Include every sentence that is
|
301 |
+
useful and relevant to the question, even if it was not used in the response,
|
302 |
+
or if only parts of the sentence are useful. Ignore the provided response when
|
303 |
+
making this judgement and base your judgement solely on the provided documents
|
304 |
+
and question. Omit sentences that, if removed from the document, would not
|
305 |
+
impact someone’s ability to answer the question.
|
306 |
+
The overall_supported_explanation field is a string explaining why the response
|
307 |
+
*as a whole* is or is not supported by the documents. In this field, provide a
|
308 |
+
step-by-step breakdown of the claims made in the response and the support (or
|
309 |
+
lack thereof) for those claims in the documents. Begin by assessing each claim
|
310 |
+
separately, one by one; don’t make any remarks about the response as a whole
|
311 |
+
until you have assessed all the claims in isolation.
|
312 |
+
The overall_supported field is a boolean indicating whether the response as a
|
313 |
+
whole is supported by the documents. This value should reflect the conclusion
|
314 |
+
you drew at the end of your step-by-step breakdown in overall_supported_explanation.
|
315 |
+
In the sentence_support_information field, provide information about the support
|
316 |
+
*for each sentence* in the response.
|
317 |
+
The sentence_support_information field is a list of objects, one for each sentence
|
318 |
+
in the response. Each object MUST have the following fields:
|
319 |
+
- response_sentence_key: a string identifying the sentence in the response.
|
320 |
+
This key is the same as the one used in the response above.
|
321 |
+
- explanation: a string explaining why the sentence is or is not supported by the
|
322 |
+
documents.
|
323 |
+
- supporting_sentence_keys: keys (e.g. ’0a’) of sentences from the documents that
|
324 |
+
support the response sentence. If the sentence is not supported, this list MUST
|
325 |
+
be empty. If the sentence is supported, this list MUST contain one or more keys.
|
326 |
+
In special cases where the sentence is supported, but not by any specific sentence,
|
327 |
+
you can use the string "supported_without_sentence" to indicate that the sentence
|
328 |
+
is generally supported by the documents. Consider cases where the sentence is
|
329 |
+
expressing inability to answer the question due to lack of relevant information in
|
330 |
+
the provided contex as "supported_without_sentence". In cases where the sentence
|
331 |
+
is making a general statement (e.g. outlining the steps to produce an answer, or
|
332 |
+
summarizing previously stated sentences, or a transition sentence), use the
|
333 |
+
sting "general".In cases where the sentence is correctly stating a well-known fact,
|
334 |
+
like a mathematical formula, use the string "well_known_fact". In cases where the
|
335 |
+
sentence is performing numerical reasoning (e.g. addition, multiplication), use
|
336 |
+
the string "numerical_reasoning".
|
337 |
+
- fully_supported: a boolean indicating whether the sentence is fully supported by
|
338 |
+
the documents.
|
339 |
+
- This value should reflect the conclusion you drew at the end of your step-by-step
|
340 |
+
breakdown in explanation.
|
341 |
+
- If supporting_sentence_keys is an empty list, then fully_supported must be false.
|
342 |
+
17
|
343 |
+
- Otherwise, use fully_supported to clarify whether everything in the response
|
344 |
+
sentence is fully supported by the document text indicated in supporting_sentence_keys
|
345 |
+
(fully_supported = true), or whether the sentence is only partially or incompletely
|
346 |
+
supported by that document text (fully_supported = false).
|
347 |
+
The all_utilized_sentence_keys field is a list of all sentences keys (e.g. ’0a’) that
|
348 |
+
were used to construct the answer. Include every sentence that either directly supported
|
349 |
+
the answer, or was implicitly used to construct the answer, even if it was not used
|
350 |
+
in its entirety. Omit sentences that were not used, and could have been removed from
|
351 |
+
the documents without affecting the answer.
|
352 |
+
You must respond with a valid JSON string. Use escapes for quotes, e.g. ‘\\"‘, and
|
353 |
+
newlines, e.g. ‘\\n‘. Do not write anything before or after the JSON string. Do not
|
354 |
+
wrap the JSON string in backticks like ‘‘‘ or ‘‘‘json.
|
355 |
+
As a reminder: your task is to review the response and assess which documents contain
|
356 |
+
useful information pertaining to the question, and how each sentence in the response
|
357 |
+
is supported by the text in the documents.\
|
358 |
+
"""
|
359 |
+
|
360 |
+
# Step 3: Call the LLM
|
361 |
+
chat_completion = client.chat.completions.create(
|
362 |
+
messages=[
|
363 |
+
{"role": "user", "content": prompt}
|
364 |
+
],
|
365 |
+
model="meta-llama/llama-4-maverick-17b-128e-instruct", #deepseek-r1-distill-llama-70b llama3-70b-8192 meta-llama/llama-4-maverick-17b-128e-instruct
|
366 |
+
)
|
367 |
+
|
368 |
+
return documents_formatted,chat_completion.choices[0].message.content.strip()
|
369 |
+
|
370 |
+
'''chat_completion = openai.chat.completions.create(
|
371 |
+
messages=[
|
372 |
+
{"role":"user",
|
373 |
+
"content":prompt}
|
374 |
+
],
|
375 |
+
model="gpt-4o",
|
376 |
+
max_tokens=1024,
|
377 |
+
|
378 |
+
)
|
379 |
+
return documents_formatted,chat_completion.choices[0].message.content'''
|
380 |
+
|
381 |
+
|
382 |
+
def extract_retrieved_sentence_keys(document_text: str) -> list[str]:
|
383 |
+
"""
|
384 |
+
Extracts sentence keys like '0a.', '0b.', etc. from a formatted document string.
|
385 |
+
|
386 |
+
Parameters:
|
387 |
+
- document_text (str): full text of document with sentence keys
|
388 |
+
|
389 |
+
Returns:
|
390 |
+
- List of unique sentence keys in the order they appear
|
391 |
+
"""
|
392 |
+
# Match pattern like 0a., 0b., 0z., 0{., 0|., etc.
|
393 |
+
pattern = r'\b0[\w\{\|\}~]\.'
|
394 |
+
|
395 |
+
matches = re.findall(pattern, document_text)
|
396 |
+
return list(dict.fromkeys(matches)) # Removes duplicates while preserving order
|
397 |
+
|
398 |
+
def compute_ragbench_metrics(judge_response: dict, retrieved_sentence_keys: list[str]) -> dict:
|
399 |
+
"""
|
400 |
+
Computes RAGBench-style metrics from Judge LLM response.
|
401 |
+
|
402 |
+
Parameters:
|
403 |
+
- judge_response (dict): JSON response from Judge LLM
|
404 |
+
- retrieved_sentence_keys (list of str): all sentence keys from the retrieved documents
|
405 |
+
|
406 |
+
Returns:
|
407 |
+
- Dictionary with Context Relevance, Context Utilization, Completeness, and Adherence
|
408 |
+
"""
|
409 |
+
|
410 |
+
R = set(judge_response.get("all_relevant_sentence_keys", [])) # Relevant sentences
|
411 |
+
U = set(judge_response.get("all_utilized_sentence_keys", [])) # Utilized sentences
|
412 |
+
intersection_RU = R & U
|
413 |
+
|
414 |
+
total_retrieved = len(retrieved_sentence_keys)
|
415 |
+
len_R = len(R)
|
416 |
+
len_U = len(U)
|
417 |
+
len_intersection = len(intersection_RU)
|
418 |
+
|
419 |
+
# Context Relevance: fraction of retrieved context that is relevant
|
420 |
+
context_relevance = len_R / total_retrieved if total_retrieved else 0.0
|
421 |
+
|
422 |
+
# Context Utilization: fraction of retrieved context that was used
|
423 |
+
context_utilization = len_U / total_retrieved if total_retrieved else 0.0
|
424 |
+
|
425 |
+
# Completeness: fraction of relevant content that was used
|
426 |
+
completeness = len_intersection / len_R if len_R else 0.0
|
427 |
+
|
428 |
+
# Adherence: 1 if all response sentences are fully supported, else 0
|
429 |
+
is_fully_supported = all(s.get("fully_supported", False)
|
430 |
+
for s in judge_response.get("sentence_support_information", []))
|
431 |
+
adherence = 1.0 if is_fully_supported and judge_response.get("overall_supported", False) else 0.0
|
432 |
+
|
433 |
+
return {
|
434 |
+
"Context Relevance": round(context_relevance, 4),
|
435 |
+
"Context Utilization": round(context_utilization, 4),
|
436 |
+
"Completeness": round(completeness, 4),
|
437 |
+
"Adherence": adherence
|
438 |
+
}
|
439 |
+
|
440 |
+
|
441 |
+
def evaluate_rag_pipeline(domain, q_indices):
|
442 |
+
import torch
|
443 |
+
import numpy as np
|
444 |
+
from sklearn.metrics import mean_squared_error, roc_auc_score
|
445 |
+
|
446 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
447 |
+
|
448 |
+
def safe_append(gt_list, pred_list, gt_val, pred_val):
|
449 |
+
if gt_val is not None and pred_val is not None:
|
450 |
+
gt_list.append(gt_val)
|
451 |
+
pred_list.append(pred_val)
|
452 |
+
|
453 |
+
def clean_and_parse_json_block(text):
|
454 |
+
# Strip markdown-style code block if present
|
455 |
+
#text = text.strip().strip("`").strip()
|
456 |
+
code_block_match = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", text)
|
457 |
+
if code_block_match:
|
458 |
+
text = code_block_match.group(1).strip()
|
459 |
+
|
460 |
+
# Remove invalid/control characters that break decoding
|
461 |
+
text = re.sub(r"[^\x20-\x7E\n\t]", "", text)
|
462 |
+
|
463 |
+
try:
|
464 |
+
return json.loads(text)
|
465 |
+
except json.JSONDecodeError as e:
|
466 |
+
print("❌ JSON Decode Error:", e)
|
467 |
+
print("⚠️ Cleaned text:\n", text)
|
468 |
+
raise
|
469 |
+
|
470 |
+
|
471 |
+
gt_relevance, pred_relevance = [], []
|
472 |
+
gt_utilization, pred_utilization = [], []
|
473 |
+
gt_completeness, pred_completeness = [], []
|
474 |
+
gt_adherence, pred_adherence = [], []
|
475 |
+
|
476 |
+
if(domain=="Legal"):
|
477 |
+
dataset = legal_dataset
|
478 |
+
elif(domain=="Medical"):
|
479 |
+
dataset = med_dataset
|
480 |
+
elif(domain=="GK"):
|
481 |
+
dataset = gk_dataset
|
482 |
+
elif(domain=="CS"):
|
483 |
+
dataset = cs_dataset
|
484 |
+
elif(domain=="Finance"):
|
485 |
+
dataset = fin_dataset
|
486 |
+
|
487 |
+
for i in q_indices:
|
488 |
+
query = dataset[i]['question']
|
489 |
+
print(f"\n\n\nQuery:{i}.{query}\n====================================================================")
|
490 |
+
#print(f"\ndomain:{domain}====================================================================")
|
491 |
+
documents_formatted, response = jugde_response_rag(query, domain)
|
492 |
+
judge_response = clean_and_parse_json_block(response)
|
493 |
+
print(f"\ndocuments_formatted:{documents_formatted}")
|
494 |
+
print(f"\n======================================================================\nResponse:{judge_response}")
|
495 |
+
retrieved_sentences = extract_retrieved_sentence_keys(documents_formatted)
|
496 |
+
predicted = compute_ragbench_metrics(judge_response, retrieved_sentences)
|
497 |
+
|
498 |
+
# GT values
|
499 |
+
gt_r = dataset[i].get('relevance_score')
|
500 |
+
gt_u = dataset[i].get('utilization_score')
|
501 |
+
gt_c = dataset[i].get('completeness_score')
|
502 |
+
gt_a = dataset[i].get('gpt3_adherence')
|
503 |
+
|
504 |
+
safe_append(gt_relevance, pred_relevance, gt_r, predicted['Context Relevance'])
|
505 |
+
safe_append(gt_utilization, pred_utilization, gt_u, predicted['Context Utilization'])
|
506 |
+
safe_append(gt_completeness, pred_completeness, gt_c, predicted['Completeness'])
|
507 |
+
if gt_a is not None and predicted['Adherence'] is not None:
|
508 |
+
safe_append(gt_adherence, pred_adherence, int(gt_a), int(predicted['Adherence']))
|
509 |
+
|
510 |
+
def compute_rmse(gt, pred):
|
511 |
+
return round(np.sqrt(np.mean((np.array(gt) - np.array(pred)) ** 2)), 4)
|
512 |
+
|
513 |
+
result = {
|
514 |
+
"Context Relevance": compute_rmse(gt_relevance, pred_relevance),
|
515 |
+
"Context Utilization": compute_rmse(gt_utilization, pred_utilization),
|
516 |
+
"Completeness": compute_rmse(gt_completeness, pred_completeness),
|
517 |
+
}
|
518 |
+
|
519 |
+
if len(set(gt_adherence)) == 2:
|
520 |
+
result["Adherence"] = compute_rmse(gt_adherence, pred_adherence)
|
521 |
+
result["AUC-ROC (Adherence)"] = round(roc_auc_score(gt_adherence, pred_adherence), 4)
|
522 |
+
else:
|
523 |
+
result["Adherence"] = compute_rmse(gt_adherence, pred_adherence)
|
524 |
+
result["AUC-ROC (Adherence)"] = "N/A - one class only"
|
525 |
+
|
526 |
+
return result
|
527 |
+
|
528 |
+
|
529 |
+
|
530 |
+
# Updated wrapper
|
531 |
+
def evaluate_rag_gradio(domain, q_indices_str):
|
532 |
+
# Capture logs
|
533 |
+
log_stream = io.StringIO()
|
534 |
+
sys.stdout = log_stream
|
535 |
+
|
536 |
+
try:
|
537 |
+
# Parse comma-separated indices
|
538 |
+
q_indices = [int(x.strip()) for x in q_indices_str.split(",") if x.strip().isdigit()]
|
539 |
+
results = evaluate_rag_pipeline(domain, q_indices)
|
540 |
+
|
541 |
+
logs = log_stream.getvalue()
|
542 |
+
return results, logs
|
543 |
+
|
544 |
+
except Exception as e:
|
545 |
+
traceback.print_exc()
|
546 |
+
return {"error": str(e)}, log_stream.getvalue()
|
547 |
+
|
548 |
+
finally:
|
549 |
+
sys.stdout = sys.__stdout__ # Restore stdout
|
550 |
+
|
551 |
+
# Gradio interface
|
552 |
+
iface = gr.Interface(
|
553 |
+
fn=evaluate_rag_gradio,
|
554 |
+
inputs=[
|
555 |
+
gr.Dropdown(choices=["Legal", "Medical", "GK", "CS", "Finance"], label="Domain"),
|
556 |
+
gr.Textbox(label="Comma-separated Query Indices (e.g. 89,121,245)", lines=1),
|
557 |
+
],
|
558 |
+
outputs=[
|
559 |
+
gr.JSON(label="Evaluation Metrics (RMSE & AUC-ROC)"),
|
560 |
+
gr.Textbox(label="Execution Log", lines=10, interactive=True),
|
561 |
+
],
|
562 |
+
title="RAG Evaluation Dashboard",
|
563 |
+
description="Evaluate your RAG pipeline across selected queries using GPT-based generation and judgment."
|
564 |
+
)
|
565 |
+
|
566 |
+
# Launch app
|
567 |
+
iface.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
bkp_app.py
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Deploy_CapstoneRagBench.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1OG-77VqKwz3509_osgNgSeOMJ9G6RvB4
|
8 |
+
"""
|
9 |
+
|
10 |
+
# For Legal
|
11 |
+
|
12 |
+
from datasets import load_from_disk
|
13 |
+
from transformers import AutoTokenizer, AutoModel
|
14 |
+
import faiss
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
from datasets import load_dataset, Dataset, get_dataset_config_names
|
18 |
+
import os
|
19 |
+
from groq import Groq
|
20 |
+
from sentence_transformers import CrossEncoder
|
21 |
+
import requests
|
22 |
+
import uuid
|
23 |
+
import re
|
24 |
+
import gradio as gr
|
25 |
+
import json
|
26 |
+
import torch
|
27 |
+
import numpy as np
|
28 |
+
from sklearn.metrics import mean_squared_error, roc_auc_score
|
29 |
+
import gradio as gr
|
30 |
+
import io
|
31 |
+
import sys
|
32 |
+
import traceback
|
33 |
+
|
34 |
+
|
35 |
+
def retrieve_top_k(query,domain='legal', model_name='nlpaueb/legal-bert-base-uncased', k=8):
|
36 |
+
# Load tokenizer and model
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
38 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
39 |
+
model.eval()
|
40 |
+
|
41 |
+
#print(f"In retrive_top_k Query:{query}")
|
42 |
+
# Tokenize and embed query using mean pooling
|
43 |
+
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
44 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
45 |
+
with torch.no_grad():
|
46 |
+
outputs = model(**inputs)
|
47 |
+
query_embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
48 |
+
|
49 |
+
# Load FAISS index and dataset
|
50 |
+
index_path = f"{domain}_index/faiss.index"
|
51 |
+
dataset_path = f"{domain}_dataset"
|
52 |
+
|
53 |
+
faiss_index = faiss.read_index(index_path)
|
54 |
+
dataset = load_from_disk(dataset_path)
|
55 |
+
|
56 |
+
# Perform FAISS search
|
57 |
+
D, I = faiss_index.search(query_embedding.astype('float32'), k)
|
58 |
+
|
59 |
+
# Retrieve top-k matching chunks
|
60 |
+
top_chunks = [dataset[int(idx)]['text'] for idx in I[0]]
|
61 |
+
return top_chunks
|
62 |
+
|
63 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
64 |
+
#print(device)
|
65 |
+
|
66 |
+
dataset = load_dataset("rungalileo/ragbench", "cuad", split="test")
|
67 |
+
|
68 |
+
client = Groq(
|
69 |
+
api_key= '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',#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',
|
70 |
+
)
|
71 |
+
|
72 |
+
# Load BGE reranker
|
73 |
+
reranker = CrossEncoder("BAAI/bge-reranker-base", max_length=512)
|
74 |
+
|
75 |
+
def rerank_documents_bge(query, documents, top_n=5, return_scores=False):
|
76 |
+
"""
|
77 |
+
Rerank documents using BAAI/bge-reranker-base CrossEncoder.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
query (str): The query string.
|
81 |
+
documents (List[str]): List of candidate documents.
|
82 |
+
top_n (int): Number of top results to return.
|
83 |
+
return_scores (bool): Whether to return scores along with documents.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
List[str] or List[Tuple[str, float]]
|
87 |
+
"""
|
88 |
+
if not documents:
|
89 |
+
return []
|
90 |
+
|
91 |
+
# Prepare (query, doc) pairs
|
92 |
+
pairs = [(query, doc) for doc in documents]
|
93 |
+
|
94 |
+
# Predict relevance scores
|
95 |
+
scores = reranker.predict(pairs, batch_size=16)
|
96 |
+
|
97 |
+
# Sort by score descending
|
98 |
+
reranked = sorted(zip(documents, scores), key=lambda x: x[1], reverse=True)
|
99 |
+
|
100 |
+
if return_scores:
|
101 |
+
return reranked[:top_n]
|
102 |
+
else:
|
103 |
+
return [doc for doc, _ in reranked[:top_n]]
|
104 |
+
|
105 |
+
|
106 |
+
def generate_response_rag(query,model,index_dir="legal_index"):
|
107 |
+
# Step 1: Retrieve top-k context chunks using your FAISS setup
|
108 |
+
top_chunks = retrieve_top_k(query,'legal', "nlpaueb/legal-bert-base-uncased")
|
109 |
+
|
110 |
+
# Step 2: Rerank retrieved documents using cross-encoder
|
111 |
+
#reranked_chunks = rerank_documents(query, top_chunks, top_n=15)
|
112 |
+
#rerank_and_filter_chunks = filter_by_faithfulness(query, reranked_chunks)
|
113 |
+
|
114 |
+
#reranked_chunks = rerank_and_filter_chunks
|
115 |
+
reranked_chunks_bge = rerank_documents_bge(query, top_chunks, top_n=5)
|
116 |
+
#sum_context = summarize_context("\n\n".join(reranked_chunks_bge))
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
final_context = reranked_chunks_bge
|
121 |
+
# Step 2: Prepare context and RAG-style prompt
|
122 |
+
context = "\n\n".join(final_context)
|
123 |
+
|
124 |
+
#print(f"Context:{context}")
|
125 |
+
prompt = f"""You are a helpful legal assistant.
|
126 |
+
Use the following context to answer the question.
|
127 |
+
Using only the information from the retrieved context, answer the following question. If the answer cannot be derived, say "I don't know." Always have answer with prefix **Answer:**
|
128 |
+
|
129 |
+
Context:{context}
|
130 |
+
|
131 |
+
Question: {query}
|
132 |
+
Answer:"""
|
133 |
+
|
134 |
+
# Step 3: Call the LLM (LLaMA3 or any chat model)
|
135 |
+
chat_completion = client.chat.completions.create(
|
136 |
+
messages=[
|
137 |
+
{"role": "user", "content": prompt}
|
138 |
+
],
|
139 |
+
model=model,#"gemma2-9b-it"#"qwen/qwen3-32b"#deepseek-r1-distill-llama-70b",#"llama3-70b-8192", # mistral-saba-24b
|
140 |
+
temperature=0.0
|
141 |
+
)
|
142 |
+
|
143 |
+
return chat_completion.choices[0].message.content.strip()
|
144 |
+
|
145 |
+
'''response = openai.chat.completions.create(
|
146 |
+
model="gpt-3.5-turbo",
|
147 |
+
messages=[
|
148 |
+
{"role": "user", "content": prompt}
|
149 |
+
],
|
150 |
+
temperature=0.0,
|
151 |
+
max_tokens=1024
|
152 |
+
)
|
153 |
+
|
154 |
+
return response.choices[0].message.content'''
|
155 |
+
|
156 |
+
#JUDGE LLM
|
157 |
+
|
158 |
+
def split_into_keyed_sentences(text, prefix):
|
159 |
+
"""Splits text into sentences with keys like '0a.', '0b.', or 'a.', 'b.', etc."""
|
160 |
+
# Basic sentence tokenizer with keys
|
161 |
+
sentences = re.split(r'(?<=[.?!])\s+', text.strip())
|
162 |
+
keyed = {}
|
163 |
+
for i, s in enumerate(sentences):
|
164 |
+
key = f"{prefix}{chr(97 + i)}" # 'a', 'b', ...
|
165 |
+
if s:
|
166 |
+
keyed[key] = s.strip()
|
167 |
+
return keyed
|
168 |
+
|
169 |
+
|
170 |
+
def jugde_response_rag(query, embedder="nlpaueb/legal-bert-base-uncased", domain="legal", k=5):
|
171 |
+
|
172 |
+
top_chunks = retrieve_top_k(query)
|
173 |
+
|
174 |
+
top_chunks = [chunk[0] if isinstance(chunk, tuple) else chunk for chunk in top_chunks]
|
175 |
+
|
176 |
+
# Step 2: Prepare context and RAG-style prompt
|
177 |
+
context = "\n\n".join(top_chunks)
|
178 |
+
|
179 |
+
# Split context and dummy answer into keyed sentences
|
180 |
+
document_keys = split_into_keyed_sentences(context, "0")
|
181 |
+
|
182 |
+
#print(f"Query:{query}\n====================================================================")
|
183 |
+
response = generate_response_rag(query,model="llama3-70b-8192") #deepseek-r1-distill-llama-70b llama3-70b-8192
|
184 |
+
#print(f"\n====================================\Generator Response:{response}")
|
185 |
+
#For deepseek
|
186 |
+
#print("Before Curated:",response)
|
187 |
+
response=response[response.find("**Answer"):].replace("**Answer","");
|
188 |
+
|
189 |
+
print(f"Response for Generator LLM:{response}")
|
190 |
+
|
191 |
+
response_keys = split_into_keyed_sentences(response, "")
|
192 |
+
# Rebuild sections for prompt
|
193 |
+
documents_formatted = "\n".join([f"{k}. {v}" for k, v in document_keys.items()])
|
194 |
+
response_formatted = "\n".join([f"{k}. {v}" for k, v in response_keys.items()])
|
195 |
+
|
196 |
+
'''print(f"\n====================================================================")
|
197 |
+
print(f"documents_formatted:{documents_formatted}")
|
198 |
+
print(f"\n====================================================================")
|
199 |
+
print(f"response_formatted:{response_formatted}")
|
200 |
+
print(f"\n====================================================================")'''
|
201 |
+
|
202 |
+
|
203 |
+
prompt = f"""I asked someone to answer a question based on one or more documents.
|
204 |
+
Your task is to review their response and assess whether or not each sentence
|
205 |
+
in that response is supported by text in the documents. And if so, which
|
206 |
+
sentences in the documents provide that support. You will also tell me which
|
207 |
+
of the documents contain useful information for answering the question, and
|
208 |
+
which of the documents the answer was sourced from.
|
209 |
+
Here are the documents, each of which is split into sentences. Alongside each
|
210 |
+
sentence is associated key, such as ’0a.’ or ’0b.’ that you can use to refer
|
211 |
+
to it:
|
212 |
+
'''
|
213 |
+
{documents_formatted}
|
214 |
+
'''
|
215 |
+
The question was:
|
216 |
+
'''
|
217 |
+
{query}
|
218 |
+
'''
|
219 |
+
Here is their response, split into sentences. Alongside each sentence is
|
220 |
+
associated key, such as ’a.’ or ’b.’ that you can use to refer to it. Note
|
221 |
+
that these keys are unique to the response, and are not related to the keys
|
222 |
+
in the documents:
|
223 |
+
'''
|
224 |
+
{response_formatted}
|
225 |
+
'''
|
226 |
+
You must respond with a JSON object matching this schema:
|
227 |
+
'''
|
228 |
+
{{
|
229 |
+
"relevance_explanation": string,
|
230 |
+
"all_relevant_sentence_keys": [string],
|
231 |
+
"overall_supported_explanation": string,
|
232 |
+
"overall_supported": boolean,
|
233 |
+
"sentence_support_information": [
|
234 |
+
{{
|
235 |
+
"response_sentence_key": string,
|
236 |
+
"explanation": string,
|
237 |
+
"supporting_sentence_keys": [string],
|
238 |
+
"fully_supported": boolean
|
239 |
+
}},
|
240 |
+
],
|
241 |
+
"all_utilized_sentence_keys": [string]
|
242 |
+
}}
|
243 |
+
'''
|
244 |
+
The relevance_explanation field is a string explaining which documents
|
245 |
+
contain useful information for answering the question. Provide a step-by-step
|
246 |
+
breakdown of information provided in the documents and how it is useful for
|
247 |
+
answering the question.
|
248 |
+
The all_relevant_sentence_keys field is a list of all document sentences keys
|
249 |
+
(e.g. ’0a’) that are revant to the question. Include every sentence that is
|
250 |
+
useful and relevant to the question, even if it was not used in the response,
|
251 |
+
or if only parts of the sentence are useful. Ignore the provided response when
|
252 |
+
making this judgement and base your judgement solely on the provided documents
|
253 |
+
and question. Omit sentences that, if removed from the document, would not
|
254 |
+
impact someone’s ability to answer the question.
|
255 |
+
The overall_supported_explanation field is a string explaining why the response
|
256 |
+
*as a whole* is or is not supported by the documents. In this field, provide a
|
257 |
+
step-by-step breakdown of the claims made in the response and the support (or
|
258 |
+
lack thereof) for those claims in the documents. Begin by assessing each claim
|
259 |
+
separately, one by one; don’t make any remarks about the response as a whole
|
260 |
+
until you have assessed all the claims in isolation.
|
261 |
+
The overall_supported field is a boolean indicating whether the response as a
|
262 |
+
whole is supported by the documents. This value should reflect the conclusion
|
263 |
+
you drew at the end of your step-by-step breakdown in overall_supported_explanation.
|
264 |
+
In the sentence_support_information field, provide information about the support
|
265 |
+
*for each sentence* in the response.
|
266 |
+
The sentence_support_information field is a list of objects, one for each sentence
|
267 |
+
in the response. Each object MUST have the following fields:
|
268 |
+
- response_sentence_key: a string identifying the sentence in the response.
|
269 |
+
This key is the same as the one used in the response above.
|
270 |
+
- explanation: a string explaining why the sentence is or is not supported by the
|
271 |
+
documents.
|
272 |
+
- supporting_sentence_keys: keys (e.g. ’0a’) of sentences from the documents that
|
273 |
+
support the response sentence. If the sentence is not supported, this list MUST
|
274 |
+
be empty. If the sentence is supported, this list MUST contain one or more keys.
|
275 |
+
In special cases where the sentence is supported, but not by any specific sentence,
|
276 |
+
you can use the string "supported_without_sentence" to indicate that the sentence
|
277 |
+
is generally supported by the documents. Consider cases where the sentence is
|
278 |
+
expressing inability to answer the question due to lack of relevant information in
|
279 |
+
the provided contex as "supported_without_sentence". In cases where the sentence
|
280 |
+
is making a general statement (e.g. outlining the steps to produce an answer, or
|
281 |
+
summarizing previously stated sentences, or a transition sentence), use the
|
282 |
+
sting "general".In cases where the sentence is correctly stating a well-known fact,
|
283 |
+
like a mathematical formula, use the string "well_known_fact". In cases where the
|
284 |
+
sentence is performing numerical reasoning (e.g. addition, multiplication), use
|
285 |
+
the string "numerical_reasoning".
|
286 |
+
- fully_supported: a boolean indicating whether the sentence is fully supported by
|
287 |
+
the documents.
|
288 |
+
- This value should reflect the conclusion you drew at the end of your step-by-step
|
289 |
+
breakdown in explanation.
|
290 |
+
- If supporting_sentence_keys is an empty list, then fully_supported must be false.
|
291 |
+
17
|
292 |
+
- Otherwise, use fully_supported to clarify whether everything in the response
|
293 |
+
sentence is fully supported by the document text indicated in supporting_sentence_keys
|
294 |
+
(fully_supported = true), or whether the sentence is only partially or incompletely
|
295 |
+
supported by that document text (fully_supported = false).
|
296 |
+
The all_utilized_sentence_keys field is a list of all sentences keys (e.g. ’0a’) that
|
297 |
+
were used to construct the answer. Include every sentence that either directly supported
|
298 |
+
the answer, or was implicitly used to construct the answer, even if it was not used
|
299 |
+
in its entirety. Omit sentences that were not used, and could have been removed from
|
300 |
+
the documents without affecting the answer.
|
301 |
+
You must respond with a valid JSON string. Use escapes for quotes, e.g. ‘\\"‘, and
|
302 |
+
newlines, e.g. ‘\\n‘. Do not write anything before or after the JSON string. Do not
|
303 |
+
wrap the JSON string in backticks like ‘‘‘ or ‘‘‘json.
|
304 |
+
As a reminder: your task is to review the response and assess which documents contain
|
305 |
+
useful information pertaining to the question, and how each sentence in the response
|
306 |
+
is supported by the text in the documents.\
|
307 |
+
"""
|
308 |
+
|
309 |
+
# Step 3: Call the LLM
|
310 |
+
chat_completion = client.chat.completions.create(
|
311 |
+
messages=[
|
312 |
+
{"role": "user", "content": prompt}
|
313 |
+
],
|
314 |
+
model="meta-llama/llama-4-maverick-17b-128e-instruct", #deepseek-r1-distill-llama-70b llama3-70b-8192 meta-llama/llama-4-maverick-17b-128e-instruct
|
315 |
+
)
|
316 |
+
|
317 |
+
return documents_formatted,chat_completion.choices[0].message.content.strip()
|
318 |
+
|
319 |
+
'''chat_completion = openai.chat.completions.create(
|
320 |
+
messages=[
|
321 |
+
{"role":"user",
|
322 |
+
"content":prompt}
|
323 |
+
],
|
324 |
+
model="gpt-4o",
|
325 |
+
max_tokens=1024,
|
326 |
+
|
327 |
+
)
|
328 |
+
return documents_formatted,chat_completion.choices[0].message.content'''
|
329 |
+
|
330 |
+
def extract_retrieved_sentence_keys(document_text: str) -> list[str]:
|
331 |
+
"""
|
332 |
+
Extracts sentence keys like '0a.', '0b.', etc. from a formatted document string.
|
333 |
+
|
334 |
+
Parameters:
|
335 |
+
- document_text (str): full text of document with sentence keys
|
336 |
+
|
337 |
+
Returns:
|
338 |
+
- List of unique sentence keys in the order they appear
|
339 |
+
"""
|
340 |
+
# Match pattern like 0a., 0b., 0z., 0{., 0|., etc.
|
341 |
+
pattern = r'\b0[\w\{\|\}~]\.'
|
342 |
+
|
343 |
+
matches = re.findall(pattern, document_text)
|
344 |
+
return list(dict.fromkeys(matches)) # Removes duplicates while preserving order
|
345 |
+
|
346 |
+
def compute_ragbench_metrics(judge_response: dict, retrieved_sentence_keys: list[str]) -> dict:
|
347 |
+
"""
|
348 |
+
Computes RAGBench-style metrics from Judge LLM response.
|
349 |
+
|
350 |
+
Parameters:
|
351 |
+
- judge_response (dict): JSON response from Judge LLM
|
352 |
+
- retrieved_sentence_keys (list of str): all sentence keys from the retrieved documents
|
353 |
+
|
354 |
+
Returns:
|
355 |
+
- Dictionary with Context Relevance, Context Utilization, Completeness, and Adherence
|
356 |
+
"""
|
357 |
+
|
358 |
+
R = set(judge_response.get("all_relevant_sentence_keys", [])) # Relevant sentences
|
359 |
+
U = set(judge_response.get("all_utilized_sentence_keys", [])) # Utilized sentences
|
360 |
+
intersection_RU = R & U
|
361 |
+
|
362 |
+
total_retrieved = len(retrieved_sentence_keys)
|
363 |
+
len_R = len(R)
|
364 |
+
len_U = len(U)
|
365 |
+
len_intersection = len(intersection_RU)
|
366 |
+
|
367 |
+
# Context Relevance: fraction of retrieved context that is relevant
|
368 |
+
context_relevance = len_R / total_retrieved if total_retrieved else 0.0
|
369 |
+
|
370 |
+
# Context Utilization: fraction of retrieved context that was used
|
371 |
+
context_utilization = len_U / total_retrieved if total_retrieved else 0.0
|
372 |
+
|
373 |
+
# Completeness: fraction of relevant content that was used
|
374 |
+
completeness = len_intersection / len_R if len_R else 0.0
|
375 |
+
|
376 |
+
# Adherence: 1 if all response sentences are fully supported, else 0
|
377 |
+
is_fully_supported = all(s.get("fully_supported", False)
|
378 |
+
for s in judge_response.get("sentence_support_information", []))
|
379 |
+
adherence = 1.0 if is_fully_supported and judge_response.get("overall_supported", False) else 0.0
|
380 |
+
|
381 |
+
return {
|
382 |
+
"Context Relevance": round(context_relevance, 4),
|
383 |
+
"Context Utilization": round(context_utilization, 4),
|
384 |
+
"Completeness": round(completeness, 4),
|
385 |
+
"Adherence": adherence
|
386 |
+
}
|
387 |
+
|
388 |
+
|
389 |
+
def compute_rmse(gt, pred):
|
390 |
+
return round(np.sqrt(np.mean((np.array(gt) - np.array(pred)) ** 2)), 4)
|
391 |
+
|
392 |
+
|
393 |
+
def evaluate_rag_pipeline(q_indices):
|
394 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
395 |
+
|
396 |
+
def safe_append(gt_list, pred_list, gt_val, pred_val):
|
397 |
+
if gt_val is not None and pred_val is not None:
|
398 |
+
gt_list.append(gt_val)
|
399 |
+
pred_list.append(pred_val)
|
400 |
+
|
401 |
+
def clean_and_parse_json_block(text):
|
402 |
+
# Strip markdown-style code block if present
|
403 |
+
#text = text.strip().strip("`").strip()
|
404 |
+
code_block_match = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", text)
|
405 |
+
if code_block_match:
|
406 |
+
text = code_block_match.group(1).strip()
|
407 |
+
|
408 |
+
# Remove invalid/control characters that break decoding
|
409 |
+
text = re.sub(r"[^\x20-\x7E\n\t]", "", text)
|
410 |
+
|
411 |
+
try:
|
412 |
+
return json.loads(text)
|
413 |
+
except json.JSONDecodeError as e:
|
414 |
+
print("❌ JSON Decode Error:", e)
|
415 |
+
print("⚠️ Cleaned text:\n", text)
|
416 |
+
raise
|
417 |
+
|
418 |
+
|
419 |
+
gt_relevance, pred_relevance = [], []
|
420 |
+
gt_utilization, pred_utilization = [], []
|
421 |
+
gt_completeness, pred_completeness = [], []
|
422 |
+
gt_adherence, pred_adherence = [], []
|
423 |
+
|
424 |
+
for i in q_indices:
|
425 |
+
query = dataset[i]['question']
|
426 |
+
print(f"\n\n\nQuery:{i}.{query}\n====================================================================")
|
427 |
+
documents_formatted, response = jugde_response_rag(
|
428 |
+
query, embedder="nlpaueb/legal-bert-base-uncased", domain="legal")
|
429 |
+
judge_response = clean_and_parse_json_block(response)
|
430 |
+
print(f"\n======================================================================\nResponse:{judge_response}")
|
431 |
+
retrieved_sentences = extract_retrieved_sentence_keys(documents_formatted)
|
432 |
+
predicted = compute_ragbench_metrics(judge_response, retrieved_sentences)
|
433 |
+
|
434 |
+
# GT values
|
435 |
+
gt_r = dataset[i].get('relevance_score')
|
436 |
+
gt_u = dataset[i].get('utilization_score')
|
437 |
+
gt_c = dataset[i].get('completeness_score')
|
438 |
+
gt_a = dataset[i].get('gpt3_adherence')
|
439 |
+
|
440 |
+
safe_append(gt_relevance, pred_relevance, gt_r, predicted['Context Relevance'])
|
441 |
+
safe_append(gt_utilization, pred_utilization, gt_u, predicted['Context Utilization'])
|
442 |
+
safe_append(gt_completeness, pred_completeness, gt_c, predicted['Completeness'])
|
443 |
+
if gt_a is not None and predicted['Adherence'] is not None:
|
444 |
+
safe_append(gt_adherence, pred_adherence, int(gt_a), int(predicted['Adherence']))
|
445 |
+
|
446 |
+
def compute_rmse(gt, pred):
|
447 |
+
return round(np.sqrt(np.mean((np.array(gt) - np.array(pred)) ** 2)), 4)
|
448 |
+
|
449 |
+
result = {
|
450 |
+
"Context Relevance": compute_rmse(gt_relevance, pred_relevance),
|
451 |
+
"Context Utilization": compute_rmse(gt_utilization, pred_utilization),
|
452 |
+
"Completeness": compute_rmse(gt_completeness, pred_completeness),
|
453 |
+
}
|
454 |
+
|
455 |
+
if len(set(gt_adherence)) == 2:
|
456 |
+
result["Adherence"] = compute_rmse(gt_adherence, pred_adherence)
|
457 |
+
result["AUC-ROC (Adherence)"] = round(roc_auc_score(gt_adherence, pred_adherence), 4)
|
458 |
+
else:
|
459 |
+
result["Adherence"] = compute_rmse(gt_adherence, pred_adherence)
|
460 |
+
result["AUC-ROC (Adherence)"] = "N/A - one class only"
|
461 |
+
|
462 |
+
return result
|
463 |
+
|
464 |
+
|
465 |
+
# Wrapper to parse textbox input into list of ints
|
466 |
+
def evaluate_rag_gradio(q_indices_str):
|
467 |
+
# Capture printed logs
|
468 |
+
log_stream = io.StringIO()
|
469 |
+
sys.stdout = log_stream
|
470 |
+
|
471 |
+
try:
|
472 |
+
q_indices = [int(x.strip()) for x in q_indices_str.split(",") if x.strip().isdigit()]
|
473 |
+
results = evaluate_rag_pipeline(q_indices)
|
474 |
+
|
475 |
+
# Return metrics and logs
|
476 |
+
logs = log_stream.getvalue()
|
477 |
+
return results, logs
|
478 |
+
|
479 |
+
except Exception as e:
|
480 |
+
traceback.print_exc()
|
481 |
+
return {"error": str(e)}, log_stream.getvalue()
|
482 |
+
|
483 |
+
finally:
|
484 |
+
sys.stdout = sys.__stdout__
|
485 |
+
|
486 |
+
iface = gr.Interface(
|
487 |
+
fn=evaluate_rag_gradio,
|
488 |
+
inputs=gr.Textbox(label="Comma-separated Query Indices (e.g. 89,121,245)", lines=1),
|
489 |
+
outputs=[
|
490 |
+
gr.JSON(label="Evaluation Metrics (RMSE & AUC-ROC)"),
|
491 |
+
gr.Textbox(label="Execution Log", lines=5, interactive=True)
|
492 |
+
],
|
493 |
+
title="RAG Evaluation Dashboard",
|
494 |
+
description="Evaluate your RAG pipeline across selected queries using GPT-based generation and judgment."
|
495 |
+
)
|
496 |
+
|
497 |
+
iface.launch(debug=True)
|
cs_dataset/data-00000-of-00001.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c81fcd283298c766efceed51005f94977eb042565a6d6e32a141af3516eddab
|
3 |
+
size 88920
|
cs_dataset/dataset_info.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"citation": "",
|
3 |
+
"description": "",
|
4 |
+
"features": {
|
5 |
+
"text": {
|
6 |
+
"dtype": "string",
|
7 |
+
"_type": "Value"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"homepage": "",
|
11 |
+
"license": ""
|
12 |
+
}
|
cs_dataset/state.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "ec44a3721c635a27",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_output_all_columns": false,
|
12 |
+
"_split": null
|
13 |
+
}
|
cs_index/faiss.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:781715fcdd5abaccf46e7df9e34cb8fe08cefa3f47fc4381c1530e83ad3d3cb6
|
3 |
+
size 370221
|
fin_dataset/data-00000-of-00001.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b6bb5e029518500e5764893d7267aa86d93e7a0e8ceae7969c371f17b42e3fc
|
3 |
+
size 1504056
|
fin_dataset/dataset_info.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"citation": "",
|
3 |
+
"description": "",
|
4 |
+
"features": {
|
5 |
+
"text": {
|
6 |
+
"dtype": "string",
|
7 |
+
"_type": "Value"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"homepage": "",
|
11 |
+
"license": ""
|
12 |
+
}
|
fin_dataset/state.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "fe416e18cf3f19d0",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_output_all_columns": false,
|
12 |
+
"_split": null
|
13 |
+
}
|
fin_index/faiss.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdb1e231b83001723586362b682f80487689ad9bb208a1c8dea3bade5d004cbd
|
3 |
+
size 6039597
|
gk_dataset/data-00000-of-00001.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2ff3d603dd8f386d4f55dfb696d9a486e29e2c948c7e4cb03291b3f1185e671
|
3 |
+
size 777424
|
gk_dataset/dataset_info.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"citation": "",
|
3 |
+
"description": "",
|
4 |
+
"features": {
|
5 |
+
"text": {
|
6 |
+
"dtype": "string",
|
7 |
+
"_type": "Value"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"homepage": "",
|
11 |
+
"license": ""
|
12 |
+
}
|
gk_dataset/state.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "00d8c8388a8ac73c",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_output_all_columns": false,
|
12 |
+
"_split": null
|
13 |
+
}
|
gk_index/faiss.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c22862009c798b27b235f0af137915a98fad631649735dbf19a467e3f896be6
|
3 |
+
size 3526701
|
legal_dataset/data-00000-of-00001.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85ff687742e949901491ed90e9babf78ced5c7dcd3a910986ab25bb5f390072b
|
3 |
+
size 4926576
|
legal_dataset/dataset_info.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"citation": "",
|
3 |
+
"description": "",
|
4 |
+
"features": {
|
5 |
+
"text": {
|
6 |
+
"dtype": "string",
|
7 |
+
"_type": "Value"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"homepage": "",
|
11 |
+
"license": ""
|
12 |
+
}
|
legal_dataset/state.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "f6b83182f5e3cfa3",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_output_all_columns": false,
|
12 |
+
"_split": null
|
13 |
+
}
|
legal_index/faiss.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64c4157c3617e605acc8464d3cf1da1ea321c07a6a1bdb6c2675edec41d3a0ba
|
3 |
+
size 7978029
|
med_dataset/data-00000-of-00001.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb7eaae975a43389ed3ccd143dfcfca1e61ad094e3064ec477f36f9cd47d11ad
|
3 |
+
size 2245824
|
med_dataset/dataset_info.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"citation": "",
|
3 |
+
"description": "",
|
4 |
+
"features": {
|
5 |
+
"text": {
|
6 |
+
"dtype": "string",
|
7 |
+
"_type": "Value"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"homepage": "",
|
11 |
+
"license": ""
|
12 |
+
}
|
med_dataset/state.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "e0ae8ccbcca935ea",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_output_all_columns": false,
|
12 |
+
"_split": null
|
13 |
+
}
|
med_index/faiss.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:678041534c1d3641eaaed36f5efca24094762a1454eb6bdd413c2973b94c5dff
|
3 |
+
size 11473965
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
sentence-transformers
|
4 |
+
faiss-cpu
|
5 |
+
torch
|
6 |
+
datasets
|
7 |
+
scikit-learn
|
8 |
+
groq
|