Spaces:
Paused
Paused
Commit
·
251790a
1
Parent(s):
7924dcb
a little suprise
Browse files- app.py +7 -3
- requirements.txt +9 -1
- web2json/__pycache__/ai_extractor.cpython-311.pyc +0 -0
- web2json/__pycache__/pipeline.cpython-311.pyc +0 -0
- web2json/__pycache__/postprocessor.cpython-311.pyc +0 -0
- web2json/__pycache__/preprocessor.cpython-311.pyc +0 -0
- web2json/ai_extractor.py +74 -12
- web2json/contentextractors.py +379 -0
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import pandas as pd
|
|
| 3 |
import gradio as gr
|
| 4 |
from typing import Dict, Any, Type
|
| 5 |
from web2json.preprocessor import BasicPreprocessor
|
| 6 |
-
from web2json.ai_extractor import AIExtractor,LLMClassifierExtractor,NvidiaLLMClient, NvidiaRerankerClient
|
| 7 |
from web2json.postprocessor import PostProcessor
|
| 8 |
from web2json.pipeline import Pipeline
|
| 9 |
from pydantic import BaseModel, Field, create_model
|
|
@@ -185,7 +185,10 @@ def webpage_to_json(content: str, is_url: bool, schema: BaseModel) -> Dict[str,
|
|
| 185 |
- Follow the exact structure and data types specified in the schema
|
| 186 |
- If a required field cannot be found, indicate this clearly
|
| 187 |
- Preserve the original formatting and context where relevant
|
| 188 |
-
- Return the extracted data in the format specified by the schema
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
classification_prompt_template = schema.model_json_schema()
|
| 191 |
# Initialize pipeline components
|
|
@@ -194,7 +197,8 @@ def webpage_to_json(content: str, is_url: bool, schema: BaseModel) -> Dict[str,
|
|
| 194 |
try:
|
| 195 |
# llm = GeminiLLMClient(config={'api_key': os.getenv('GEMINI_API_KEY')})
|
| 196 |
llm = NvidiaLLMClient(config={'api_key': os.getenv('NVIDIA_API_KEY'),'model_name': 'qwen/qwen2.5-7b-instruct'})
|
| 197 |
-
reranker = NvidiaRerankerClient(config={'api_key': os.getenv('NVIDIA_API_KEY'),'model_name': 'nv-rerank-qa-mistral-4b:1'})
|
|
|
|
| 198 |
except Exception as e:
|
| 199 |
return {"error": f"Failed to initialize LLM client: {str(e)}"}
|
| 200 |
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from typing import Dict, Any, Type
|
| 5 |
from web2json.preprocessor import BasicPreprocessor
|
| 6 |
+
from web2json.ai_extractor import AIExtractor,LLMClassifierExtractor,NvidiaLLMClient, NvidiaRerankerClient , ModalRerankerClient
|
| 7 |
from web2json.postprocessor import PostProcessor
|
| 8 |
from web2json.pipeline import Pipeline
|
| 9 |
from pydantic import BaseModel, Field, create_model
|
|
|
|
| 185 |
- Follow the exact structure and data types specified in the schema
|
| 186 |
- If a required field cannot be found, indicate this clearly
|
| 187 |
- Preserve the original formatting and context where relevant
|
| 188 |
+
- Return the extracted data in the format specified by the schema
|
| 189 |
+
- STICK TO THE SCHEMA DON'T EVEN THINK OF DOING SOMETHING ELSE
|
| 190 |
+
- IF THE SCHEMA ASKS FOR AN ARRAY THEN YOU MAY TRY TO EXTRACT ONE IF THERE IS
|
| 191 |
+
- OR I WILL KILL AND KIDNAP YOUR FAMILY AND TORTURE THEM """
|
| 192 |
|
| 193 |
classification_prompt_template = schema.model_json_schema()
|
| 194 |
# Initialize pipeline components
|
|
|
|
| 197 |
try:
|
| 198 |
# llm = GeminiLLMClient(config={'api_key': os.getenv('GEMINI_API_KEY')})
|
| 199 |
llm = NvidiaLLMClient(config={'api_key': os.getenv('NVIDIA_API_KEY'),'model_name': 'qwen/qwen2.5-7b-instruct'})
|
| 200 |
+
# reranker = NvidiaRerankerClient(config={'api_key': os.getenv('NVIDIA_API_KEY'),'model_name': 'nv-rerank-qa-mistral-4b:1'})\
|
| 201 |
+
reranker = ModalRerankerClient("https://abdulrahmanmfam2003--qwen3-reranker-rerank.modal.run")
|
| 202 |
except Exception as e:
|
| 203 |
return {"error": f"Failed to initialize LLM client: {str(e)}"}
|
| 204 |
|
requirements.txt
CHANGED
|
@@ -15,4 +15,12 @@ openai
|
|
| 15 |
html_chunking
|
| 16 |
langchain_nvidia_ai_endpoints
|
| 17 |
langchain_core
|
| 18 |
-
lxml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
html_chunking
|
| 16 |
langchain_nvidia_ai_endpoints
|
| 17 |
langchain_core
|
| 18 |
+
lxml
|
| 19 |
+
pdfkit
|
| 20 |
+
html2text
|
| 21 |
+
inscriptis
|
| 22 |
+
trafilatura
|
| 23 |
+
markdownify
|
| 24 |
+
beautifulsoup4
|
| 25 |
+
readabilipy
|
| 26 |
+
docling
|
web2json/__pycache__/ai_extractor.cpython-311.pyc
CHANGED
|
Binary files a/web2json/__pycache__/ai_extractor.cpython-311.pyc and b/web2json/__pycache__/ai_extractor.cpython-311.pyc differ
|
|
|
web2json/__pycache__/pipeline.cpython-311.pyc
CHANGED
|
Binary files a/web2json/__pycache__/pipeline.cpython-311.pyc and b/web2json/__pycache__/pipeline.cpython-311.pyc differ
|
|
|
web2json/__pycache__/postprocessor.cpython-311.pyc
CHANGED
|
Binary files a/web2json/__pycache__/postprocessor.cpython-311.pyc and b/web2json/__pycache__/postprocessor.cpython-311.pyc differ
|
|
|
web2json/__pycache__/preprocessor.cpython-311.pyc
CHANGED
|
Binary files a/web2json/__pycache__/preprocessor.cpython-311.pyc and b/web2json/__pycache__/preprocessor.cpython-311.pyc differ
|
|
|
web2json/ai_extractor.py
CHANGED
|
@@ -23,6 +23,9 @@ import requests
|
|
| 23 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 24 |
import torch
|
| 25 |
from typing import List, Dict
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
class LLMClient(ABC):
|
| 28 |
"""
|
|
@@ -208,9 +211,9 @@ class NvidiaLLMClient(LLMClient):
|
|
| 208 |
|
| 209 |
# Store generation settings with sensible defaults
|
| 210 |
gen_conf = config.get("generation_config", {})
|
| 211 |
-
self.temperature = gen_conf.get("temperature", 0
|
| 212 |
self.top_p = gen_conf.get("top_p", 0.7)
|
| 213 |
-
self.max_tokens = gen_conf.get("max_tokens",
|
| 214 |
|
| 215 |
def set_model(self, model_name: str):
|
| 216 |
"""
|
|
@@ -237,7 +240,7 @@ class NvidiaLLMClient(LLMClient):
|
|
| 237 |
model=self.model_name,
|
| 238 |
messages=[{"role": "user", "content": prompt}],
|
| 239 |
temperature=self.temperature,
|
| 240 |
-
top_p=self.top_p,
|
| 241 |
max_tokens=self.max_tokens
|
| 242 |
# stream is omitted (defaults to False)
|
| 243 |
)
|
|
@@ -301,13 +304,12 @@ class NvidiaRerankerClient(RerankerClient):
|
|
| 301 |
p_scores = 1 / (1 + np.exp(-raw_scores))
|
| 302 |
print(f"Sigmoid scores: {p_scores}")
|
| 303 |
|
| 304 |
-
# 3.
|
| 305 |
-
min_score = np.min(p_scores)
|
| 306 |
max_score = np.max(p_scores)
|
| 307 |
-
if max_score ==
|
| 308 |
-
norm_scores = np.
|
| 309 |
else:
|
| 310 |
-
norm_scores =
|
| 311 |
print(f"Normalized scores: {norm_scores}")
|
| 312 |
|
| 313 |
# 4. Filter by threshold using normalized scores
|
|
@@ -325,6 +327,60 @@ class NvidiaRerankerClient(RerankerClient):
|
|
| 325 |
# def call_batch(self, prompts, max_workers=8):
|
| 326 |
# pass
|
| 327 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
class HFRerankerClient(LLMClient):
|
| 330 |
"""
|
|
@@ -485,16 +541,22 @@ class LLMClassifierExtractor(AIExtractor):
|
|
| 485 |
hf (bool): Whether to use the Hugging Face reranker or NVIDIA (default).
|
| 486 |
"""
|
| 487 |
# print("TIME TO EXTRACT")
|
| 488 |
-
chunks = self.chunk_content(content, max_tokens=
|
| 489 |
-
|
| 490 |
# print(f"Content successfully chunked: {chunks}")
|
|
|
|
|
|
|
| 491 |
classified_chunks = self.classify_chunks(chunks, hf=hf) # conditional reranker
|
| 492 |
# extracting the content
|
| 493 |
|
| 494 |
-
|
| 495 |
-
|
|
|
|
| 496 |
# print(classified_chunks)
|
| 497 |
# print('='*80)
|
|
|
|
|
|
|
|
|
|
| 498 |
filtered_content = "\n\n".join(classified_chunks)
|
| 499 |
|
| 500 |
if not filtered_content:
|
|
|
|
| 23 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 24 |
import torch
|
| 25 |
from typing import List, Dict
|
| 26 |
+
from tenacity import retry, wait_exponential, stop_after_attempt
|
| 27 |
+
import trafilatura
|
| 28 |
+
|
| 29 |
|
| 30 |
class LLMClient(ABC):
|
| 31 |
"""
|
|
|
|
| 211 |
|
| 212 |
# Store generation settings with sensible defaults
|
| 213 |
gen_conf = config.get("generation_config", {})
|
| 214 |
+
self.temperature = gen_conf.get("temperature", 0)
|
| 215 |
self.top_p = gen_conf.get("top_p", 0.7)
|
| 216 |
+
self.max_tokens = gen_conf.get("max_tokens", 8192)
|
| 217 |
|
| 218 |
def set_model(self, model_name: str):
|
| 219 |
"""
|
|
|
|
| 240 |
model=self.model_name,
|
| 241 |
messages=[{"role": "user", "content": prompt}],
|
| 242 |
temperature=self.temperature,
|
| 243 |
+
# top_p=self.top_p,
|
| 244 |
max_tokens=self.max_tokens
|
| 245 |
# stream is omitted (defaults to False)
|
| 246 |
)
|
|
|
|
| 304 |
p_scores = 1 / (1 + np.exp(-raw_scores))
|
| 305 |
print(f"Sigmoid scores: {p_scores}")
|
| 306 |
|
| 307 |
+
# 3. Max normalization
|
|
|
|
| 308 |
max_score = np.max(p_scores)
|
| 309 |
+
if max_score == 0:
|
| 310 |
+
norm_scores = np.zeros_like(p_scores)
|
| 311 |
else:
|
| 312 |
+
norm_scores = p_scores / max_score
|
| 313 |
print(f"Normalized scores: {norm_scores}")
|
| 314 |
|
| 315 |
# 4. Filter by threshold using normalized scores
|
|
|
|
| 327 |
# def call_batch(self, prompts, max_workers=8):
|
| 328 |
# pass
|
| 329 |
|
| 330 |
+
def retry_on_error(fn):
|
| 331 |
+
"""Simple retry decorator (exponential back-off, max 6 tries)."""
|
| 332 |
+
return retry(
|
| 333 |
+
wait=wait_exponential(multiplier=0.5, min=0.5, max=5),
|
| 334 |
+
stop=stop_after_attempt(6),
|
| 335 |
+
reraise=True,
|
| 336 |
+
)(fn)
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
class ModalRerankerClient(RerankerClient):
|
| 340 |
+
"""Client for the Modal Qwen3-Reranker endpoint (non-streaming)."""
|
| 341 |
+
|
| 342 |
+
def __init__(self, endpoint_url: str):
|
| 343 |
+
self.endpoint_url = endpoint_url.rstrip("/") # ensure no trailing slash
|
| 344 |
+
|
| 345 |
+
def set_endpoint(self, url: str):
|
| 346 |
+
self.endpoint_url = url.rstrip("/")
|
| 347 |
+
|
| 348 |
+
@retry_on_error
|
| 349 |
+
def rerank(
|
| 350 |
+
self,
|
| 351 |
+
query: str,
|
| 352 |
+
passages: List[str],
|
| 353 |
+
threshold: float = 0.5,
|
| 354 |
+
) -> List[Document]:
|
| 355 |
+
"""Call the remote endpoint and return filtered passages."""
|
| 356 |
+
if not isinstance(query,str):
|
| 357 |
+
query = str(query)
|
| 358 |
+
payload = {"query": query, "passages": passages}
|
| 359 |
+
print(payload)
|
| 360 |
+
res = requests.post(self.endpoint_url, json=payload, timeout=60)
|
| 361 |
+
res.raise_for_status()
|
| 362 |
+
data = res.json()
|
| 363 |
+
|
| 364 |
+
# The endpoint already returns probabilities (0-1). Extract them.
|
| 365 |
+
ranked = data.get("ranked_passages", [])
|
| 366 |
+
# Extract scores
|
| 367 |
+
scores = np.array([p["score"] for p in ranked], dtype=float)
|
| 368 |
+
# Max normalization
|
| 369 |
+
max_score = scores.max() if len(scores) > 0 else 1.0
|
| 370 |
+
if max_score == 0:
|
| 371 |
+
norm_scores = np.zeros_like(scores)
|
| 372 |
+
else:
|
| 373 |
+
norm_scores = scores / max_score
|
| 374 |
+
# Filter by threshold using normalized scores
|
| 375 |
+
filtered = [
|
| 376 |
+
(p, norm) for p, norm in zip(ranked, norm_scores) if norm >= threshold
|
| 377 |
+
]
|
| 378 |
+
# Convert to LangChain Documents
|
| 379 |
+
docs = [
|
| 380 |
+
Document(page_content=p["passage"], metadata={"score": p["score"], "norm_score": norm})
|
| 381 |
+
for p, norm in filtered
|
| 382 |
+
]
|
| 383 |
+
return docs
|
| 384 |
|
| 385 |
class HFRerankerClient(LLMClient):
|
| 386 |
"""
|
|
|
|
| 541 |
hf (bool): Whether to use the Hugging Face reranker or NVIDIA (default).
|
| 542 |
"""
|
| 543 |
# print("TIME TO EXTRACT")
|
| 544 |
+
chunks = self.chunk_content(content, max_tokens=500)
|
| 545 |
+
print(f"Content successfully chunked into {len(chunks)}.")
|
| 546 |
# print(f"Content successfully chunked: {chunks}")
|
| 547 |
+
# chunks = [trafilatura.extract(chunk,favor_recall=True) for chunk in chunks]
|
| 548 |
+
# chunks = [chunk for chunk in chunks if chunk is not None]
|
| 549 |
classified_chunks = self.classify_chunks(chunks, hf=hf) # conditional reranker
|
| 550 |
# extracting the content
|
| 551 |
|
| 552 |
+
if isinstance(classified_chunks[0],Document):
|
| 553 |
+
classified_chunks = [chunk.page_content for chunk in classified_chunks]
|
| 554 |
+
print(f"Classified Chunks {len(classified_chunks)}")
|
| 555 |
# print(classified_chunks)
|
| 556 |
# print('='*80)
|
| 557 |
+
# NOTE: More preprocesing
|
| 558 |
+
# classified_chunks = [trafilatura.extract(chunk,favor_recall=True) for chunk in classified_chunks]
|
| 559 |
+
# classified_chunks = [chunk for chunk in classified_chunks if chunk is not None]
|
| 560 |
filtered_content = "\n\n".join(classified_chunks)
|
| 561 |
|
| 562 |
if not filtered_content:
|
web2json/contentextractors.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import json
|
| 4 |
+
import pdfkit
|
| 5 |
+
import requests
|
| 6 |
+
import warnings
|
| 7 |
+
import tempfile
|
| 8 |
+
# import textract
|
| 9 |
+
import html2text
|
| 10 |
+
import inscriptis
|
| 11 |
+
import trafilatura
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from markdownify import markdownify
|
| 14 |
+
from json_repair import repair_json
|
| 15 |
+
from bs4 import BeautifulSoup, Comment
|
| 16 |
+
from html_chunking import get_html_chunks
|
| 17 |
+
from urllib.error import URLError, HTTPError
|
| 18 |
+
from html_to_markdown import convert_to_markdown
|
| 19 |
+
from readabilipy import simple_json_from_html_string
|
| 20 |
+
from docling.document_converter import DocumentConverter
|
| 21 |
+
from dateparser_scripts.update_supported_languages_and_locales import to_string
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def clean_html(html_content: str) -> str:
|
| 25 |
+
"""
|
| 26 |
+
Cleans up the given HTML content by:
|
| 27 |
+
- Removing <script> and <style> tags and their content.
|
| 28 |
+
- Removing HTML comments.
|
| 29 |
+
- Extracting and returning the visible text with normalized whitespace.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
html_content (str): The HTML content to clean.
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
str: The cleaned, visible text from the HTML.
|
| 36 |
+
"""
|
| 37 |
+
# Parse the HTML content
|
| 38 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
| 39 |
+
|
| 40 |
+
# Remove script and style elements
|
| 41 |
+
# Remove unwanted tags
|
| 42 |
+
for tag in soup(["script", "style", "img", "a", "table", "tr", "td", "th", "thead", "tbody",
|
| 43 |
+
"tfoot", "header", "footer", "link", "rel"]):
|
| 44 |
+
tag.decompose()
|
| 45 |
+
|
| 46 |
+
# Remove elements that do not contain any visible text
|
| 47 |
+
for element in soup.find_all():
|
| 48 |
+
# If the element has no text (after stripping whitespace), remove it
|
| 49 |
+
if not element.get_text(strip=True):
|
| 50 |
+
element.decompose()
|
| 51 |
+
|
| 52 |
+
# Remove HTML comments
|
| 53 |
+
for comment in soup.find_all(string=lambda text: isinstance(text, Comment)):
|
| 54 |
+
comment.extract()
|
| 55 |
+
|
| 56 |
+
# Extract text and normalize whitespace
|
| 57 |
+
# text = soup.get_text(separator=" ", strip=True)
|
| 58 |
+
# clean_text = re.sub(r'\s+', ' ', text)
|
| 59 |
+
|
| 60 |
+
# return clean_text
|
| 61 |
+
return str(soup)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def print_content_extractors():
|
| 65 |
+
print(
|
| 66 |
+
[
|
| 67 |
+
"Default: the plain text of the HTML page",
|
| 68 |
+
"Inscriptis",
|
| 69 |
+
"Trafilatura",
|
| 70 |
+
]
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class ContentExtractor:
|
| 75 |
+
def get_text(self, html):
|
| 76 |
+
return clean_html(html)
|
| 77 |
+
|
| 78 |
+
# TODO: Clean this mess
|
| 79 |
+
def url_to_html(self, url,clean=False):
|
| 80 |
+
# Define custom headers to mimic a browser request
|
| 81 |
+
headers = {
|
| 82 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
|
| 83 |
+
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8",
|
| 84 |
+
"Accept-Language": "en-US,en;q=0.6",
|
| 85 |
+
"Cache-Control": "max-age=0",
|
| 86 |
+
"Sec-Ch-Ua": "\"Not(A:Brand\";v=\"99\", \"Brave\";v=\"133\", \"Chromium\";v=\"133\"",
|
| 87 |
+
"Sec-Ch-Ua-Mobile": "?0",
|
| 88 |
+
"Sec-Ch-Ua-Platform": "\"Windows\"",
|
| 89 |
+
"Sec-Fetch-Dest": "document",
|
| 90 |
+
"Sec-Fetch-Mode": "navigate",
|
| 91 |
+
"Sec-Fetch-Site": "none",
|
| 92 |
+
"Sec-Fetch-User": "?1",
|
| 93 |
+
"Upgrade-Insecure-Requests": "1"
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
# Create a Request object with custom headers
|
| 98 |
+
response = requests.get(url, headers=headers, timeout=10)
|
| 99 |
+
|
| 100 |
+
html = None
|
| 101 |
+
|
| 102 |
+
if response.status_code == 200:
|
| 103 |
+
html = response.text
|
| 104 |
+
else:
|
| 105 |
+
print(f"Failed to retrieve HTML. Status code: {response.status_code}")
|
| 106 |
+
return None
|
| 107 |
+
|
| 108 |
+
if clean:
|
| 109 |
+
return self.get_text(html)
|
| 110 |
+
|
| 111 |
+
return html
|
| 112 |
+
|
| 113 |
+
except HTTPError as e:
|
| 114 |
+
print(f"HTTP Error: {e.code} - {e.reason}")
|
| 115 |
+
return None
|
| 116 |
+
except URLError as e:
|
| 117 |
+
print(f"URL Error: {e.reason}")
|
| 118 |
+
return None
|
| 119 |
+
except Exception as e:
|
| 120 |
+
print(f"An unexpected error occurred: {e}")
|
| 121 |
+
return None
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class Inscriptis(ContentExtractor):
|
| 125 |
+
def __init__(self):
|
| 126 |
+
super()
|
| 127 |
+
self.headers = {
|
| 128 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Brave/119.0.0.0",
|
| 129 |
+
"Accept-Language": "en-US,en;q=0.9,ar;q=0.8",
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
warnings.warn("\nBeware, put only clean links with no trackers, or it may produce unexpected results.")
|
| 133 |
+
|
| 134 |
+
def get_text(self, html):
|
| 135 |
+
"""Extract text from HTML using inscriptis."""
|
| 136 |
+
return inscriptis.get_text(html)
|
| 137 |
+
|
| 138 |
+
def url_to_html(self, url):
|
| 139 |
+
response = requests.get(url, headers=self.headers)
|
| 140 |
+
return response.text
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class Docling(ContentExtractor):
|
| 144 |
+
def __init__(self):
|
| 145 |
+
super().__init__()
|
| 146 |
+
|
| 147 |
+
# TODO: This is an unexpected behaviour but due to docling docs website being down, it's what works for now
|
| 148 |
+
def get_text(self, text_content):
|
| 149 |
+
result = None
|
| 150 |
+
with tempfile.NamedTemporaryFile(mode='w+', suffix='.html', delete=False, encoding='utf-8') as tmpfile:
|
| 151 |
+
tmpfile.write(text_content)
|
| 152 |
+
tmpfile.flush()
|
| 153 |
+
tmpfile_path = tmpfile.name.replace("\\", "/")
|
| 154 |
+
tmpfile_path = Path(tmpfile_path)
|
| 155 |
+
try:
|
| 156 |
+
converter = DocumentConverter()
|
| 157 |
+
document = converter.convert(tmpfile_path).document
|
| 158 |
+
tables = []
|
| 159 |
+
for table_ix, table in enumerate(document.tables):
|
| 160 |
+
table_text = table.export_to_markdown()
|
| 161 |
+
tables.append(table_text)
|
| 162 |
+
|
| 163 |
+
result = document.export_to_markdown()
|
| 164 |
+
for table in tables:
|
| 165 |
+
result += "\n\n" + table
|
| 166 |
+
finally:
|
| 167 |
+
os.remove(tmpfile_path)
|
| 168 |
+
return result
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class ReadabiliPy(ContentExtractor):
|
| 172 |
+
def __init__(self):
|
| 173 |
+
super().__init__()
|
| 174 |
+
|
| 175 |
+
def get_text(self, html):
|
| 176 |
+
content = simple_json_from_html_string(html, use_readability=True)
|
| 177 |
+
json_object = json.dumps(content, indent=4)
|
| 178 |
+
repaired = repair_json(json_object)
|
| 179 |
+
return repaired
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class Trafilatura(ContentExtractor):
|
| 183 |
+
def __init__(self):
|
| 184 |
+
super().__init__()
|
| 185 |
+
self.headers = {
|
| 186 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36",
|
| 187 |
+
"Accept-Language": "en-US,en;q=0.9",
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
warnings.warn("\nTrafilatura Content Extractor: Beware, put only clean links with no trackers, or it may produce unexpected results.")
|
| 191 |
+
|
| 192 |
+
from copy import deepcopy
|
| 193 |
+
from trafilatura.settings import DEFAULT_CONFIG
|
| 194 |
+
config = deepcopy(DEFAULT_CONFIG)
|
| 195 |
+
# config['DEFAULT']['MIN_EXTRACTED_SIZE'] = '5000' # Configurable but this value worked well for me
|
| 196 |
+
self.config = config
|
| 197 |
+
|
| 198 |
+
def url_to_html(self, url):
|
| 199 |
+
response = requests.get(url, headers=self.headers)
|
| 200 |
+
return response.text
|
| 201 |
+
|
| 202 |
+
def get_text(self, html, output_format="markdown", min_extracted_size_char=20_000):
|
| 203 |
+
# self.config['DEFAULT']['MIN_EXTRACTED_SIZE'] = f"{min_extracted_size_char}"
|
| 204 |
+
# self.config['DEFAULT']['MIN_OUTPUT_SIZE'] = f"{min_extracted_size_char}"
|
| 205 |
+
return trafilatura.extract(filecontent=html, favor_recall=True, config=self.config, output_format=output_format)
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class Markdownify(ContentExtractor):
|
| 209 |
+
def get_text(self, html):
|
| 210 |
+
alt = re.sub(r"\n{3,}", "\n\n", html)
|
| 211 |
+
md = markdownify(alt, strip=['href', 'table', 'tr', 'td', 'header', 'footer'])
|
| 212 |
+
|
| 213 |
+
md = re.sub(r'!?\[[^\]]*\]\([^)]*\)', '', md)
|
| 214 |
+
# Remove extra newlines
|
| 215 |
+
md = re.sub(r"\n{3,}", "\n\n", md)
|
| 216 |
+
md = md.strip()
|
| 217 |
+
|
| 218 |
+
return md
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class HTML2Text(ContentExtractor):
|
| 222 |
+
def get_text(self, html):
|
| 223 |
+
converter = html2text.HTML2Text()
|
| 224 |
+
converter.ignore_tables=True
|
| 225 |
+
converter.ignore_links=True
|
| 226 |
+
converter.ignore_images=True
|
| 227 |
+
converter.ignore_mailto_links=True
|
| 228 |
+
return converter.handle(html)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class HTML_TO_Markdown(ContentExtractor):
|
| 232 |
+
def get_text(self, html):
|
| 233 |
+
alt = re.sub(r"\n{3,}", "\n\n", html)
|
| 234 |
+
md = convert_to_markdown(alt, strip=['href', 'table', 'tr', 'td', 'header', 'footer'])
|
| 235 |
+
|
| 236 |
+
md = re.sub(r'!?\[[^\]]*\]\([^)]*\)', '', md)
|
| 237 |
+
# Remove extra newlines
|
| 238 |
+
md = re.sub(r"\n{3,}", "\n\n", md)
|
| 239 |
+
md = md.strip()
|
| 240 |
+
|
| 241 |
+
return md
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class PDFkitDocling(ContentExtractor):
|
| 245 |
+
def get_text(self, html):
|
| 246 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 247 |
+
|
| 248 |
+
# Remove <a>, <link>, <img>, and other unwanted tags
|
| 249 |
+
for tag in soup.find_all(['a', 'link', 'img', 'base', 'meta', 'style', 'script', 'noscript', 'head']):
|
| 250 |
+
tag.decompose()
|
| 251 |
+
|
| 252 |
+
# Remove HTML comments
|
| 253 |
+
for comment in soup.find_all(string=lambda text: isinstance(text, Comment)):
|
| 254 |
+
comment.extract()
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
content = str(soup)
|
| 258 |
+
|
| 259 |
+
# PDF path to save
|
| 260 |
+
pdf_path = 'test.pdf'
|
| 261 |
+
|
| 262 |
+
# Create PDF
|
| 263 |
+
pdfkit.from_string(content, pdf_path)
|
| 264 |
+
|
| 265 |
+
converter = DocumentConverter()
|
| 266 |
+
|
| 267 |
+
return converter.convert(pdf_path).document.export_to_markdown()
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class TrafilatraCHUNKS(ContentExtractor):
|
| 271 |
+
def __init__(self):
|
| 272 |
+
super().__init__()
|
| 273 |
+
# self.trafi = Trafilatura()
|
| 274 |
+
|
| 275 |
+
def get_text(self, html, max_tokens=1000):
|
| 276 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 277 |
+
|
| 278 |
+
# Remove <a>, <link>, <img>, and other unwanted tags
|
| 279 |
+
for tag in soup.find_all(['a', 'link', 'img', 'base', 'meta', 'style', 'script', 'noscript', 'head']):
|
| 280 |
+
tag.decompose()
|
| 281 |
+
|
| 282 |
+
# Remove HTML comments
|
| 283 |
+
for comment in soup.find_all(string=lambda text: isinstance(text, Comment)):
|
| 284 |
+
comment.extract()
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
content = str(soup)
|
| 288 |
+
|
| 289 |
+
chunks = get_html_chunks(content, max_tokens=max_tokens, is_clean_html=True, attr_cutoff_len=50)
|
| 290 |
+
|
| 291 |
+
cleaned = [trafilatura.extract(chunk) for chunk in chunks]
|
| 292 |
+
cleaned = [chunk for chunk in cleaned if chunk is not None]
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
combined_text = ""
|
| 296 |
+
for chunk in cleaned:
|
| 297 |
+
if chunk is None:
|
| 298 |
+
continue
|
| 299 |
+
combined_text += chunk + "\n"
|
| 300 |
+
|
| 301 |
+
return combined_text
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
class TrafilaCHUNKSRobust(ContentExtractor):
|
| 305 |
+
def __init__(self):
|
| 306 |
+
super().__init__()
|
| 307 |
+
# self.trafi = Trafilatura()
|
| 308 |
+
|
| 309 |
+
def get_text(self, html, max_tokens=1000):
|
| 310 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 311 |
+
|
| 312 |
+
for tag in soup.find_all(['style', 'script', 'head', 'img', 'base', 'noscript']):
|
| 313 |
+
tag.decompose()
|
| 314 |
+
|
| 315 |
+
for tag in soup.find_all(lambda tag: tag.attrs and any("nav" in str(v) for v in tag.attrs.values())):
|
| 316 |
+
tag.decompose()
|
| 317 |
+
|
| 318 |
+
# Remove HTML comments
|
| 319 |
+
for comment in soup.find_all(string=lambda text: isinstance(text, Comment)):
|
| 320 |
+
comment.extract()
|
| 321 |
+
|
| 322 |
+
content = str(soup)
|
| 323 |
+
|
| 324 |
+
chunks = get_html_chunks(content, max_tokens=max_tokens, is_clean_html=True, attr_cutoff_len=50)
|
| 325 |
+
|
| 326 |
+
cleaned = [trafilatura.extract(chunk) for chunk in chunks]
|
| 327 |
+
cleaned = [chunk for chunk in cleaned if chunk is not None]
|
| 328 |
+
|
| 329 |
+
combined_text = ""
|
| 330 |
+
for chunk in cleaned:
|
| 331 |
+
if chunk is None:
|
| 332 |
+
continue
|
| 333 |
+
combined_text += chunk + "\n"
|
| 334 |
+
|
| 335 |
+
return combined_text
|
| 336 |
+
|
| 337 |
+
class TrafilaCHUNKSRobustV2(ContentExtractor):
|
| 338 |
+
def __init__(self):
|
| 339 |
+
super().__init__()
|
| 340 |
+
# self.trafi = Trafilatura()
|
| 341 |
+
|
| 342 |
+
def get_text(self, html, max_tokens=1000):
|
| 343 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 344 |
+
|
| 345 |
+
for tag in soup.find_all(['style', 'script', 'head', 'img', 'base', 'noscript']):
|
| 346 |
+
tag.decompose()
|
| 347 |
+
|
| 348 |
+
# Remove HTML comments
|
| 349 |
+
for comment in soup.find_all(string=lambda text: isinstance(text, Comment)):
|
| 350 |
+
comment.extract()
|
| 351 |
+
|
| 352 |
+
content = str(soup)
|
| 353 |
+
|
| 354 |
+
chunks = get_html_chunks(content, max_tokens=max_tokens, is_clean_html=True, attr_cutoff_len=50)
|
| 355 |
+
|
| 356 |
+
cleaned = [trafilatura.extract(chunk) for chunk in chunks]
|
| 357 |
+
cleaned = [chunk for chunk in cleaned if chunk is not None]
|
| 358 |
+
|
| 359 |
+
combined_text = ""
|
| 360 |
+
for chunk in cleaned:
|
| 361 |
+
if chunk is None:
|
| 362 |
+
continue
|
| 363 |
+
combined_text += chunk + "\n"
|
| 364 |
+
|
| 365 |
+
return combined_text
|
| 366 |
+
|
| 367 |
+
# Very Bad lol
|
| 368 |
+
# class Textract(ContentExtractor):
|
| 369 |
+
# def get_text(self, html):
|
| 370 |
+
# with tempfile.NamedTemporaryFile(mode='w+', suffix='.html', delete=False, encoding='utf-8') as tmpfile:
|
| 371 |
+
# tmpfile.write(html)
|
| 372 |
+
# tmpfile.flush()
|
| 373 |
+
# tmpfile_path = tmpfile.name.replace("\\", "/")
|
| 374 |
+
# tmpfile_path = Path(tmpfile_path)
|
| 375 |
+
# try:
|
| 376 |
+
# result = textract.process(tmpfile_path)
|
| 377 |
+
# finally:
|
| 378 |
+
# os.remove(tmpfile_path)
|
| 379 |
+
# return result
|