File size: 14,440 Bytes
d65c9b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from __future__ import annotations

import gradio as gr
from PIL import Image
import torch

from src.eunms import Model_Type, Scheduler_Type, Gradient_Averaging_Type, Epsilon_Update_Type
from src.enums_utils import model_type_to_size, get_pipes
from src.config import RunConfig
from main import run as run_model


DESCRIPTION = '''# ReNoise: Real Image Inversion Through Iterative Noising
This is a demo for our ''ReNoise: Real Image Inversion Through Iterative Noising'' [paper](https://garibida.github.io/ReNoise-Inversion/). Code is available [here](https://github.com/garibida/ReNoise-Inversion)
Our ReNoise inversion technique can be applied to various diffusion models, including recent few-step ones such as SDXL-Turbo.
This demo preform real image editing using our ReNoise inversion. The input image is resize to size of 512x512, the optimal size of SDXL Turbo.
'''

device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_type = Model_Type.SDXL_Turbo
scheduler_type = Scheduler_Type.EULER
image_size = model_type_to_size(Model_Type.SDXL_Turbo)
pipe_inversion, pipe_inference = get_pipes(model_type, scheduler_type, device=device)

cache_size = 10
prev_configs = [None for i in range(cache_size)]
prev_inv_latents = [None for i in range(cache_size)]
prev_images = [None for i in range(cache_size)]
prev_noises = [None for i in range(cache_size)]

def main_pipeline(
        input_image: str,
        src_prompt: str,
        tgt_prompt: str,
        edit_cfg: float,
        number_of_renoising_iterations: int,
        inersion_strength: float,
        avg_gradients: bool,
        first_step_range_start: int,
        first_step_range_end: int,
        rest_step_range_start: int,
        rest_step_range_end: int,
        lambda_ac: float,
        lambda_kl: float,
        noise_correction: bool):

        global prev_configs, prev_inv_latents, prev_images, prev_noises

        update_epsilon_type = Epsilon_Update_Type.OPTIMIZE if noise_correction else Epsilon_Update_Type.NONE
        avg_gradients_type = Gradient_Averaging_Type.ON_END if avg_gradients else Gradient_Averaging_Type.NONE

        first_step_range = (first_step_range_start, first_step_range_end)
        rest_step_range = (rest_step_range_start, rest_step_range_end)

        config = RunConfig(model_type = model_type,
                    num_inference_steps = 4,
                    num_inversion_steps = 4, 
                    guidance_scale = 0.0,
                    max_num_aprox_steps_first_step = first_step_range_end+1,
                    num_aprox_steps = number_of_renoising_iterations,
                    inversion_max_step = inersion_strength,
                    gradient_averaging_type = avg_gradients_type,
                    gradient_averaging_first_step_range = first_step_range,
                    gradient_averaging_step_range = rest_step_range,
                    scheduler_type = scheduler_type,
                    num_reg_steps = 4,
                    num_ac_rolls = 5,
                    lambda_ac = lambda_ac,
                    lambda_kl = lambda_kl,
                    update_epsilon_type = update_epsilon_type,
                    do_reconstruction = True)
        config.prompt = src_prompt

        inv_latent = None
        noise_list = None
        for i in range(cache_size):
            if prev_configs[i] is not None and prev_configs[i] == config and prev_images[i] == input_image:
                print(f"Using cache for config #{i}")
                inv_latent = prev_inv_latents[i]
                noise_list = prev_noises[i]
                prev_configs.pop(i)
                prev_inv_latents.pop(i)
                prev_images.pop(i)
                prev_noises.pop(i)
                break

        original_image = Image.open(input_image).convert("RGB").resize(image_size)

        res_image, inv_latent, noise, all_latents = run_model(original_image,
                                    config,
                                    latents=inv_latent,
                                    pipe_inversion=pipe_inversion,
                                    pipe_inference=pipe_inference,
                                    edit_prompt=tgt_prompt,
                                    noise=noise_list,
                                    edit_cfg=edit_cfg)

        prev_configs.append(config)
        prev_inv_latents.append(inv_latent)
        prev_images.append(input_image)
        prev_noises.append(noise)
        
        if len(prev_configs) > cache_size:
            print("Popping cache")
            prev_configs.pop(0)
            prev_inv_latents.pop(0)
            prev_images.pop(0)
            prev_noises.pop(0)

        return res_image


with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)

    gr.HTML(
        '''<a href="https://huggingface.co/spaces/orpatashnik/local-prompt-mixing?duplicate=true">
        <img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to run privately without waiting in queue''')

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Input image",
                type="filepath",
                height=image_size[0],
                width=image_size[1]
            )
            src_prompt = gr.Text(
                label='Source Prompt',
                max_lines=1,
                placeholder='A kitten is sitting in a basket on a branch',
            )
            tgt_prompt = gr.Text(
                label='Target Prompt',
                max_lines=1,
                placeholder='A plush toy kitten is sitting in a basket on a branch',
            )
            with gr.Accordion("Advanced Options", open=False):
                edit_cfg = gr.Slider(
                    label='Denoise Classifier-Free Guidence Scale',
                    minimum=1.0,
                    maximum=3.5,
                    value=1.0,
                    step=0.1
                )
                number_of_renoising_iterations = gr.Slider(
                    label='Number of ReNoise Iterations',
                    minimum=0,
                    maximum=20,
                    value=9,
                    step=1
                )
                inersion_strength = gr.Slider(
                    label='Inversion Strength',
                    minimum=0.0,
                    maximum=1.0,
                    value=1.0,
                    step=0.25
                )
                avg_gradients = gr.Checkbox(
                    label="Preform Estimation Averaging"
                )
                first_step_range_start = gr.Slider(
                    label='First Estimation in Average (t < 250)',
                    minimum=0,
                    maximum=21,
                    value=0,
                    step=1
                )
                first_step_range_end = gr.Slider(
                    label='Last Estimation in Average (t < 250)',
                    minimum=0,
                    maximum=21,
                    value=5,
                    step=1
                )
                rest_step_range_start = gr.Slider(
                    label='First Estimation in Average (t > 250)',
                    minimum=0,
                    maximum=21,
                    value=8,
                    step=1
                )
                rest_step_range_end = gr.Slider(
                    label='Last Estimation in Average (t > 250)',
                    minimum=0,
                    maximum=21,
                    value=10,
                    step=1
                )
                num_reg_steps = 4
                num_ac_rolls = 5
                lambda_ac = gr.Slider(
                    label='Labmda AC',
                    minimum=0.0,
                    maximum=50.0,
                    value=20.0,
                    step=1.0
                )
                lambda_kl = gr.Slider(
                    label='Labmda Patch KL',
                    minimum=0.0,
                    maximum=0.4,
                    value=0.065,
                    step=0.005
                )
                noise_correction = gr.Checkbox(
                    label="Preform Noise Correction"
                )

            run_button = gr.Button('Edit')
        with gr.Column():
            # result = gr.Gallery(label='Result')
            result = gr.Image(
                label="Result",
                type="pil",
                height=image_size[0],
                width=image_size[1]
            )

            examples = [
                [
                    "example_images/kitten.jpg", #input_image
                    "A kitten is sitting in a basket on a branch", #src_prompt
                    "a lego kitten is sitting in a basket on a branch", #tgt_prompt
                    1.0, #edit_cfg
                    9, #number_of_renoising_iterations
                    1.0, #inersion_strength
                    True, #avg_gradients
                    0, #first_step_range_start
                    5, #first_step_range_end
                    8, #rest_step_range_start
                    10, #rest_step_range_end
                    20.0, #lambda_ac
                    0.055, #lambda_kl
                    False #noise_correction
                ],
                [
                    "example_images/kitten.jpg", #input_image
                    "A kitten is sitting in a basket on a branch", #src_prompt
                    "a brokkoli is sitting in a basket on a branch", #tgt_prompt
                    1.0, #edit_cfg
                    9, #number_of_renoising_iterations
                    1.0, #inersion_strength
                    True, #avg_gradients
                    0, #first_step_range_start
                    5, #first_step_range_end
                    8, #rest_step_range_start
                    10, #rest_step_range_end
                    20.0, #lambda_ac
                    0.055, #lambda_kl
                    False #noise_correction
                ],
                [
                    "example_images/kitten.jpg", #input_image
                    "A kitten is sitting in a basket on a branch", #src_prompt
                    "a dog is sitting in a basket on a branch", #tgt_prompt
                    1.0, #edit_cfg
                    9, #number_of_renoising_iterations
                    1.0, #inersion_strength
                    True, #avg_gradients
                    0, #first_step_range_start
                    5, #first_step_range_end
                    8, #rest_step_range_start
                    10, #rest_step_range_end
                    20.0, #lambda_ac
                    0.055, #lambda_kl
                    False #noise_correction
                ],
                [
                    "example_images/monkey.jpeg", #input_image
                    "a monkey sitting on a tree branch in the forest", #src_prompt
                    "a beaver sitting on a tree branch in the forest", #tgt_prompt
                    1.0, #edit_cfg
                    9, #number_of_renoising_iterations
                    1.0, #inersion_strength
                    True, #avg_gradients
                    0, #first_step_range_start
                    5, #first_step_range_end
                    8, #rest_step_range_start
                    10, #rest_step_range_end
                    20.0, #lambda_ac
                    0.055, #lambda_kl
                    True #noise_correction
                ],
                [
                    "example_images/monkey.jpeg", #input_image
                    "a monkey sitting on a tree branch in the forest", #src_prompt
                    "a raccoon sitting on a tree branch in the forest", #tgt_prompt
                    1.0, #edit_cfg
                    9, #number_of_renoising_iterations
                    1.0, #inersion_strength
                    True, #avg_gradients
                    0, #first_step_range_start
                    5, #first_step_range_end
                    8, #rest_step_range_start
                    10, #rest_step_range_end
                    20.0, #lambda_ac
                    0.055, #lambda_kl
                    True #noise_correction
                ],
                [
                    "example_images/lion.jpeg", #input_image
                    "a lion is sitting in the grass at sunset", #src_prompt
                    "a tiger is sitting in the grass at sunset", #tgt_prompt
                    1.0, #edit_cfg
                    9, #number_of_renoising_iterations
                    1.0, #inersion_strength
                    True, #avg_gradients
                    0, #first_step_range_start
                    5, #first_step_range_end
                    8, #rest_step_range_start
                    10, #rest_step_range_end
                    20.0, #lambda_ac
                    0.055, #lambda_kl
                    True #noise_correction
                ]
            ]

            gr.Examples(examples=examples,
                        inputs=[
                            input_image,
                            src_prompt,
                            tgt_prompt,
                            edit_cfg,
                            number_of_renoising_iterations,
                            inersion_strength,
                            avg_gradients,
                            first_step_range_start,
                            first_step_range_end,
                            rest_step_range_start,
                            rest_step_range_end,
                            lambda_ac,
                            lambda_kl,
                            noise_correction
                        ],
                        outputs=[
                            result
                        ],
                        fn=main_pipeline,
                        cache_examples=True)


    inputs = [
        input_image,
        src_prompt,
        tgt_prompt,
        edit_cfg,
        number_of_renoising_iterations,
        inersion_strength,
        avg_gradients,
        first_step_range_start,
        first_step_range_end,
        rest_step_range_start,
        rest_step_range_end,
        lambda_ac,
        lambda_kl,
        noise_correction
    ]
    outputs = [
        result
    ]
    run_button.click(fn=main_pipeline, inputs=inputs, outputs=outputs)

demo.queue(max_size=50).launch(share=True)