Spaces:
Build error
Build error
controlnet
Browse files- app.py +2 -2
- app_init.py +26 -42
- frontend/package-lock.json +8 -0
- frontend/package.json +4 -1
- frontend/src/lib/components/Button.svelte +2 -1
- frontend/src/lib/components/Checkbox.svelte +10 -0
- frontend/src/lib/components/ImagePlayer.svelte +10 -4
- frontend/src/lib/components/InputRange.svelte +27 -6
- frontend/src/lib/components/PipelineOptions.svelte +12 -7
- frontend/src/lib/components/SeedInput.svelte +1 -1
- frontend/src/lib/components/VideoInput.svelte +70 -1
- frontend/src/lib/lcmLive.ts +99 -0
- frontend/src/lib/mediaStream.ts +93 -0
- frontend/src/lib/types.ts +2 -0
- frontend/src/lib/utils.ts +145 -0
- frontend/src/routes/+page.svelte +74 -13
- latent_consistency_controlnet.py +0 -1100
- pipelines/controlnet.py +183 -58
- pipelines/txt2img.py +14 -14
- canny_gpu.py → pipelines/utils/canny_gpu.py +0 -0
- requirements.txt +1 -1
- user_queue.py +19 -8
app.py
CHANGED
|
@@ -3,7 +3,7 @@ from fastapi import FastAPI
|
|
| 3 |
from config import args
|
| 4 |
from device import device, torch_dtype
|
| 5 |
from app_init import init_app
|
| 6 |
-
from user_queue import
|
| 7 |
from util import get_pipeline_class
|
| 8 |
|
| 9 |
|
|
@@ -11,4 +11,4 @@ app = FastAPI()
|
|
| 11 |
|
| 12 |
pipeline_class = get_pipeline_class(args.pipeline)
|
| 13 |
pipeline = pipeline_class(args, device, torch_dtype)
|
| 14 |
-
init_app(app,
|
|
|
|
| 3 |
from config import args
|
| 4 |
from device import device, torch_dtype
|
| 5 |
from app_init import init_app
|
| 6 |
+
from user_queue import user_data_events
|
| 7 |
from util import get_pipeline_class
|
| 8 |
|
| 9 |
|
|
|
|
| 11 |
|
| 12 |
pipeline_class = get_pipeline_class(args.pipeline)
|
| 13 |
pipeline = pipeline_class(args, device, torch_dtype)
|
| 14 |
+
init_app(app, user_data_events, args, pipeline)
|
app_init.py
CHANGED
|
@@ -6,15 +6,16 @@ from fastapi.staticfiles import StaticFiles
|
|
| 6 |
import logging
|
| 7 |
import traceback
|
| 8 |
from config import Args
|
| 9 |
-
from user_queue import
|
| 10 |
import uuid
|
| 11 |
-
import
|
| 12 |
import time
|
| 13 |
from PIL import Image
|
| 14 |
import io
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
-
def init_app(app: FastAPI,
|
| 18 |
app.add_middleware(
|
| 19 |
CORSMiddleware,
|
| 20 |
allow_origins=["*"],
|
|
@@ -27,19 +28,20 @@ def init_app(app: FastAPI, user_queue_map: UserQueueDict, args: Args, pipeline):
|
|
| 27 |
@app.websocket("/ws")
|
| 28 |
async def websocket_endpoint(websocket: WebSocket):
|
| 29 |
await websocket.accept()
|
| 30 |
-
if args.max_queue_size > 0 and len(
|
| 31 |
print("Server is full")
|
| 32 |
await websocket.send_json({"status": "error", "message": "Server is full"})
|
| 33 |
await websocket.close()
|
| 34 |
return
|
| 35 |
|
| 36 |
try:
|
| 37 |
-
uid = uuid.uuid4()
|
| 38 |
print(f"New user connected: {uid}")
|
| 39 |
await websocket.send_json(
|
| 40 |
{"status": "success", "message": "Connected", "userId": uid}
|
| 41 |
)
|
| 42 |
-
|
|
|
|
| 43 |
await websocket.send_json(
|
| 44 |
{"status": "start", "message": "Start Streaming", "userId": uid}
|
| 45 |
)
|
|
@@ -49,40 +51,27 @@ def init_app(app: FastAPI, user_queue_map: UserQueueDict, args: Args, pipeline):
|
|
| 49 |
traceback.print_exc()
|
| 50 |
finally:
|
| 51 |
print(f"User disconnected: {uid}")
|
| 52 |
-
|
| 53 |
-
queue = queue_value.get("queue", None)
|
| 54 |
-
if queue:
|
| 55 |
-
while not queue.empty():
|
| 56 |
-
try:
|
| 57 |
-
queue.get_nowait()
|
| 58 |
-
except asyncio.QueueEmpty:
|
| 59 |
-
continue
|
| 60 |
|
| 61 |
@app.get("/queue_size")
|
| 62 |
async def get_queue_size():
|
| 63 |
-
queue_size = len(
|
| 64 |
return JSONResponse({"queue_size": queue_size})
|
| 65 |
|
| 66 |
@app.get("/stream/{user_id}")
|
| 67 |
async def stream(user_id: uuid.UUID):
|
| 68 |
-
uid = user_id
|
| 69 |
try:
|
| 70 |
-
user_queue = user_queue_map[uid]
|
| 71 |
-
queue = user_queue["queue"]
|
| 72 |
|
| 73 |
async def generate():
|
| 74 |
last_prompt: str = None
|
| 75 |
while True:
|
| 76 |
-
data = await
|
| 77 |
-
input_image = data["image"]
|
| 78 |
params = data["params"]
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
image = pipeline.predict(
|
| 83 |
-
input_image,
|
| 84 |
-
params,
|
| 85 |
-
)
|
| 86 |
if image is None:
|
| 87 |
continue
|
| 88 |
frame_data = io.BytesIO()
|
|
@@ -91,36 +80,31 @@ def init_app(app: FastAPI, user_queue_map: UserQueueDict, args: Args, pipeline):
|
|
| 91 |
if frame_data is not None and len(frame_data) > 0:
|
| 92 |
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
| 93 |
|
| 94 |
-
await
|
| 95 |
|
| 96 |
return StreamingResponse(
|
| 97 |
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
| 98 |
)
|
| 99 |
except Exception as e:
|
| 100 |
-
logging.error(f"Streaming Error: {e}, {
|
| 101 |
traceback.print_exc()
|
| 102 |
return HTTPException(status_code=404, detail="User not found")
|
| 103 |
|
| 104 |
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
| 105 |
-
uid = user_id
|
| 106 |
-
|
| 107 |
-
queue = user_queue["queue"]
|
| 108 |
-
if not queue:
|
| 109 |
return HTTPException(status_code=404, detail="User not found")
|
| 110 |
last_time = time.time()
|
| 111 |
try:
|
| 112 |
while True:
|
| 113 |
-
data = await websocket.receive_bytes()
|
| 114 |
params = await websocket.receive_json()
|
| 115 |
params = pipeline.InputParams(**params)
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
continue
|
| 123 |
-
await queue.put({"image": pil_image, "params": params})
|
| 124 |
if args.timeout > 0 and time.time() - last_time > args.timeout:
|
| 125 |
await websocket.send_json(
|
| 126 |
{
|
|
|
|
| 6 |
import logging
|
| 7 |
import traceback
|
| 8 |
from config import Args
|
| 9 |
+
from user_queue import UserDataEventMap, UserDataEvent
|
| 10 |
import uuid
|
| 11 |
+
from asyncio import Event, sleep
|
| 12 |
import time
|
| 13 |
from PIL import Image
|
| 14 |
import io
|
| 15 |
+
from types import SimpleNamespace
|
| 16 |
|
| 17 |
|
| 18 |
+
def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipeline):
|
| 19 |
app.add_middleware(
|
| 20 |
CORSMiddleware,
|
| 21 |
allow_origins=["*"],
|
|
|
|
| 28 |
@app.websocket("/ws")
|
| 29 |
async def websocket_endpoint(websocket: WebSocket):
|
| 30 |
await websocket.accept()
|
| 31 |
+
if args.max_queue_size > 0 and len(user_data_events) >= args.max_queue_size:
|
| 32 |
print("Server is full")
|
| 33 |
await websocket.send_json({"status": "error", "message": "Server is full"})
|
| 34 |
await websocket.close()
|
| 35 |
return
|
| 36 |
|
| 37 |
try:
|
| 38 |
+
uid = str(uuid.uuid4())
|
| 39 |
print(f"New user connected: {uid}")
|
| 40 |
await websocket.send_json(
|
| 41 |
{"status": "success", "message": "Connected", "userId": uid}
|
| 42 |
)
|
| 43 |
+
user_data_events[uid] = UserDataEvent()
|
| 44 |
+
print(f"User data events: {user_data_events}")
|
| 45 |
await websocket.send_json(
|
| 46 |
{"status": "start", "message": "Start Streaming", "userId": uid}
|
| 47 |
)
|
|
|
|
| 51 |
traceback.print_exc()
|
| 52 |
finally:
|
| 53 |
print(f"User disconnected: {uid}")
|
| 54 |
+
del user_data_events[uid]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
@app.get("/queue_size")
|
| 57 |
async def get_queue_size():
|
| 58 |
+
queue_size = len(user_data_events)
|
| 59 |
return JSONResponse({"queue_size": queue_size})
|
| 60 |
|
| 61 |
@app.get("/stream/{user_id}")
|
| 62 |
async def stream(user_id: uuid.UUID):
|
| 63 |
+
uid = str(user_id)
|
| 64 |
try:
|
|
|
|
|
|
|
| 65 |
|
| 66 |
async def generate():
|
| 67 |
last_prompt: str = None
|
| 68 |
while True:
|
| 69 |
+
data = await user_data_events[uid].wait_for_data()
|
|
|
|
| 70 |
params = data["params"]
|
| 71 |
+
# input_image = data["image"]
|
| 72 |
+
# if input_image is None:
|
| 73 |
+
# continue
|
| 74 |
+
image = pipeline.predict(params)
|
|
|
|
|
|
|
|
|
|
| 75 |
if image is None:
|
| 76 |
continue
|
| 77 |
frame_data = io.BytesIO()
|
|
|
|
| 80 |
if frame_data is not None and len(frame_data) > 0:
|
| 81 |
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
| 82 |
|
| 83 |
+
await sleep(1.0 / 120.0)
|
| 84 |
|
| 85 |
return StreamingResponse(
|
| 86 |
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
| 87 |
)
|
| 88 |
except Exception as e:
|
| 89 |
+
logging.error(f"Streaming Error: {e}, {user_data_events}")
|
| 90 |
traceback.print_exc()
|
| 91 |
return HTTPException(status_code=404, detail="User not found")
|
| 92 |
|
| 93 |
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
| 94 |
+
uid = str(user_id)
|
| 95 |
+
if uid not in user_data_events:
|
|
|
|
|
|
|
| 96 |
return HTTPException(status_code=404, detail="User not found")
|
| 97 |
last_time = time.time()
|
| 98 |
try:
|
| 99 |
while True:
|
|
|
|
| 100 |
params = await websocket.receive_json()
|
| 101 |
params = pipeline.InputParams(**params)
|
| 102 |
+
params = SimpleNamespace(**params.dict())
|
| 103 |
+
if hasattr(params, "image"):
|
| 104 |
+
image_data = await websocket.receive_bytes()
|
| 105 |
+
pil_image = Image.open(io.BytesIO(image_data))
|
| 106 |
+
params.image = pil_image
|
| 107 |
+
user_data_events[uid].update_data({"params": params})
|
|
|
|
|
|
|
| 108 |
if args.timeout > 0 and time.time() - last_time > args.timeout:
|
| 109 |
await websocket.send_json(
|
| 110 |
{
|
frontend/package-lock.json
CHANGED
|
@@ -7,6 +7,9 @@
|
|
| 7 |
"": {
|
| 8 |
"name": "frontend",
|
| 9 |
"version": "0.0.1",
|
|
|
|
|
|
|
|
|
|
| 10 |
"devDependencies": {
|
| 11 |
"@sveltejs/adapter-auto": "^2.0.0",
|
| 12 |
"@sveltejs/adapter-static": "^2.0.3",
|
|
@@ -3035,6 +3038,11 @@
|
|
| 3035 |
"queue-microtask": "^1.2.2"
|
| 3036 |
}
|
| 3037 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3038 |
"node_modules/sade": {
|
| 3039 |
"version": "1.8.1",
|
| 3040 |
"resolved": "https://registry.npmjs.org/sade/-/sade-1.8.1.tgz",
|
|
|
|
| 7 |
"": {
|
| 8 |
"name": "frontend",
|
| 9 |
"version": "0.0.1",
|
| 10 |
+
"dependencies": {
|
| 11 |
+
"rvfc-polyfill": "^1.0.7"
|
| 12 |
+
},
|
| 13 |
"devDependencies": {
|
| 14 |
"@sveltejs/adapter-auto": "^2.0.0",
|
| 15 |
"@sveltejs/adapter-static": "^2.0.3",
|
|
|
|
| 3038 |
"queue-microtask": "^1.2.2"
|
| 3039 |
}
|
| 3040 |
},
|
| 3041 |
+
"node_modules/rvfc-polyfill": {
|
| 3042 |
+
"version": "1.0.7",
|
| 3043 |
+
"resolved": "https://registry.npmjs.org/rvfc-polyfill/-/rvfc-polyfill-1.0.7.tgz",
|
| 3044 |
+
"integrity": "sha512-seBl7J1J3/k0LuzW2T9fG6JIOpni5AbU+/87LA+zTYKgTVhsfShmS8K/yOo1eeEjGJHnAdkVAUUM+PEjN9Mpkw=="
|
| 3045 |
+
},
|
| 3046 |
"node_modules/sade": {
|
| 3047 |
"version": "1.8.1",
|
| 3048 |
"resolved": "https://registry.npmjs.org/sade/-/sade-1.8.1.tgz",
|
frontend/package.json
CHANGED
|
@@ -33,5 +33,8 @@
|
|
| 33 |
"typescript": "^5.0.0",
|
| 34 |
"vite": "^4.4.2"
|
| 35 |
},
|
| 36 |
-
"type": "module"
|
|
|
|
|
|
|
|
|
|
| 37 |
}
|
|
|
|
| 33 |
"typescript": "^5.0.0",
|
| 34 |
"vite": "^4.4.2"
|
| 35 |
},
|
| 36 |
+
"type": "module",
|
| 37 |
+
"dependencies": {
|
| 38 |
+
"rvfc-polyfill": "^1.0.7"
|
| 39 |
+
}
|
| 40 |
}
|
frontend/src/lib/components/Button.svelte
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
<script lang="ts">
|
| 2 |
export let classList: string = '';
|
|
|
|
| 3 |
</script>
|
| 4 |
|
| 5 |
-
<button class="button {classList}" on:click>
|
| 6 |
<slot />
|
| 7 |
</button>
|
| 8 |
|
|
|
|
| 1 |
<script lang="ts">
|
| 2 |
export let classList: string = '';
|
| 3 |
+
export let disabled: boolean = false;
|
| 4 |
</script>
|
| 5 |
|
| 6 |
+
<button class="button {classList}" on:click {disabled}>
|
| 7 |
<slot />
|
| 8 |
</button>
|
| 9 |
|
frontend/src/lib/components/Checkbox.svelte
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<script lang="ts">
|
| 2 |
+
import type { FieldProps } from '$lib/types';
|
| 3 |
+
export let value = false;
|
| 4 |
+
export let params: FieldProps;
|
| 5 |
+
</script>
|
| 6 |
+
|
| 7 |
+
<div class="grid max-w-md grid-cols-4 items-center justify-items-start gap-3">
|
| 8 |
+
<label class="text-sm font-medium" for={params.id}>{params?.title}</label>
|
| 9 |
+
<input bind:checked={value} type="checkbox" id={params.id} class="cursor-pointer" />
|
| 10 |
+
</div>
|
frontend/src/lib/components/ImagePlayer.svelte
CHANGED
|
@@ -1,12 +1,18 @@
|
|
| 1 |
<script lang="ts">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
</script>
|
| 3 |
|
| 4 |
<div class="relative overflow-hidden rounded-lg border border-slate-300">
|
| 5 |
<!-- svelte-ignore a11y-missing-attribute -->
|
| 6 |
-
|
| 7 |
-
class="aspect-square w-full rounded-lg"
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
<div class="absolute left-0 top-0 aspect-square w-1/4">
|
| 11 |
<div class="relative z-10 aspect-square w-full object-cover">
|
| 12 |
<slot />
|
|
|
|
| 1 |
<script lang="ts">
|
| 2 |
+
import { isLCMRunning, lcmLiveState, lcmLiveActions } from '$lib/lcmLive';
|
| 3 |
+
import { onFrameChangeStore } from '$lib/mediaStream';
|
| 4 |
+
import { PUBLIC_BASE_URL } from '$env/static/public';
|
| 5 |
+
|
| 6 |
+
$: streamId = $lcmLiveState.streamId;
|
| 7 |
</script>
|
| 8 |
|
| 9 |
<div class="relative overflow-hidden rounded-lg border border-slate-300">
|
| 10 |
<!-- svelte-ignore a11y-missing-attribute -->
|
| 11 |
+
{#if $isLCMRunning}
|
| 12 |
+
<img class="aspect-square w-full rounded-lg" src={PUBLIC_BASE_URL + '/stream/' + streamId} />
|
| 13 |
+
{:else}
|
| 14 |
+
<div class="aspect-square w-full rounded-lg" />
|
| 15 |
+
{/if}
|
| 16 |
<div class="absolute left-0 top-0 aspect-square w-1/4">
|
| 17 |
<div class="relative z-10 aspect-square w-full object-cover">
|
| 18 |
<slot />
|
frontend/src/lib/components/InputRange.svelte
CHANGED
|
@@ -8,14 +8,14 @@
|
|
| 8 |
});
|
| 9 |
</script>
|
| 10 |
|
| 11 |
-
<div class="grid
|
| 12 |
-
<label class="text-sm font-medium" for=
|
| 13 |
<input
|
| 14 |
-
class="col-span-2"
|
| 15 |
bind:value
|
| 16 |
type="range"
|
| 17 |
-
id=
|
| 18 |
-
name=
|
| 19 |
min={params?.min}
|
| 20 |
max={params?.max}
|
| 21 |
step={params?.step ?? 1}
|
|
@@ -24,6 +24,27 @@
|
|
| 24 |
type="number"
|
| 25 |
step={params?.step ?? 1}
|
| 26 |
bind:value
|
| 27 |
-
class="rounded-md border
|
| 28 |
/>
|
| 29 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
});
|
| 9 |
</script>
|
| 10 |
|
| 11 |
+
<div class="grid grid-cols-4 items-center gap-3">
|
| 12 |
+
<label class="text-sm font-medium" for={params.id}>{params?.title}</label>
|
| 13 |
<input
|
| 14 |
+
class="col-span-2 h-2 w-full cursor-pointer appearance-none rounded-lg bg-gray-300 dark:bg-gray-500"
|
| 15 |
bind:value
|
| 16 |
type="range"
|
| 17 |
+
id={params.id}
|
| 18 |
+
name={params.id}
|
| 19 |
min={params?.min}
|
| 20 |
max={params?.max}
|
| 21 |
step={params?.step ?? 1}
|
|
|
|
| 24 |
type="number"
|
| 25 |
step={params?.step ?? 1}
|
| 26 |
bind:value
|
| 27 |
+
class="rounded-md border px-1 py-1 text-center text-xs font-bold dark:text-black"
|
| 28 |
/>
|
| 29 |
</div>
|
| 30 |
+
<!--
|
| 31 |
+
<style lang="postcss" scoped>
|
| 32 |
+
input[type='range']::-webkit-slider-runnable-track {
|
| 33 |
+
@apply h-2 cursor-pointer rounded-lg dark:bg-gray-50;
|
| 34 |
+
}
|
| 35 |
+
input[type='range']::-webkit-slider-thumb {
|
| 36 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
| 37 |
+
}
|
| 38 |
+
input[type='range']::-moz-range-track {
|
| 39 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
| 40 |
+
}
|
| 41 |
+
input[type='range']::-moz-range-thumb {
|
| 42 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
| 43 |
+
}
|
| 44 |
+
input[type='range']::-ms-track {
|
| 45 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
| 46 |
+
}
|
| 47 |
+
input[type='range']::-ms-thumb {
|
| 48 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
| 49 |
+
}
|
| 50 |
+
</style> -->
|
frontend/src/lib/components/PipelineOptions.svelte
CHANGED
|
@@ -5,6 +5,7 @@
|
|
| 5 |
import InputRange from './InputRange.svelte';
|
| 6 |
import SeedInput from './SeedInput.svelte';
|
| 7 |
import TextArea from './TextArea.svelte';
|
|
|
|
| 8 |
|
| 9 |
export let pipelineParams: FieldProps[];
|
| 10 |
export let pipelineValues = {} as any;
|
|
@@ -17,11 +18,13 @@
|
|
| 17 |
{#if featuredOptions}
|
| 18 |
{#each featuredOptions as params}
|
| 19 |
{#if params.field === FieldType.range}
|
| 20 |
-
<InputRange {params} bind:value={pipelineValues[params.
|
| 21 |
{:else if params.field === FieldType.seed}
|
| 22 |
-
<SeedInput bind:value={pipelineValues[params.
|
| 23 |
{:else if params.field === FieldType.textarea}
|
| 24 |
-
<TextArea {params} bind:value={pipelineValues[params.
|
|
|
|
|
|
|
| 25 |
{/if}
|
| 26 |
{/each}
|
| 27 |
{/if}
|
|
@@ -29,15 +32,17 @@
|
|
| 29 |
|
| 30 |
<details open>
|
| 31 |
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
| 32 |
-
<div class="
|
| 33 |
{#if advanceOptions}
|
| 34 |
{#each advanceOptions as params}
|
| 35 |
{#if params.field === FieldType.range}
|
| 36 |
-
<InputRange {params} bind:value={pipelineValues[params.
|
| 37 |
{:else if params.field === FieldType.seed}
|
| 38 |
-
<SeedInput bind:value={pipelineValues[params.
|
| 39 |
{:else if params.field === FieldType.textarea}
|
| 40 |
-
<TextArea {params} bind:value={pipelineValues[params.
|
|
|
|
|
|
|
| 41 |
{/if}
|
| 42 |
{/each}
|
| 43 |
{/if}
|
|
|
|
| 5 |
import InputRange from './InputRange.svelte';
|
| 6 |
import SeedInput from './SeedInput.svelte';
|
| 7 |
import TextArea from './TextArea.svelte';
|
| 8 |
+
import Checkbox from './Checkbox.svelte';
|
| 9 |
|
| 10 |
export let pipelineParams: FieldProps[];
|
| 11 |
export let pipelineValues = {} as any;
|
|
|
|
| 18 |
{#if featuredOptions}
|
| 19 |
{#each featuredOptions as params}
|
| 20 |
{#if params.field === FieldType.range}
|
| 21 |
+
<InputRange {params} bind:value={pipelineValues[params.id]}></InputRange>
|
| 22 |
{:else if params.field === FieldType.seed}
|
| 23 |
+
<SeedInput bind:value={pipelineValues[params.id]}></SeedInput>
|
| 24 |
{:else if params.field === FieldType.textarea}
|
| 25 |
+
<TextArea {params} bind:value={pipelineValues[params.id]}></TextArea>
|
| 26 |
+
{:else if params.field === FieldType.checkbox}
|
| 27 |
+
<Checkbox {params} bind:value={pipelineValues[params.id]}></Checkbox>
|
| 28 |
{/if}
|
| 29 |
{/each}
|
| 30 |
{/if}
|
|
|
|
| 32 |
|
| 33 |
<details open>
|
| 34 |
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
| 35 |
+
<div class="grid grid-cols-1 items-center gap-3 sm:grid-cols-2">
|
| 36 |
{#if advanceOptions}
|
| 37 |
{#each advanceOptions as params}
|
| 38 |
{#if params.field === FieldType.range}
|
| 39 |
+
<InputRange {params} bind:value={pipelineValues[params.id]}></InputRange>
|
| 40 |
{:else if params.field === FieldType.seed}
|
| 41 |
+
<SeedInput bind:value={pipelineValues[params.id]}></SeedInput>
|
| 42 |
{:else if params.field === FieldType.textarea}
|
| 43 |
+
<TextArea {params} bind:value={pipelineValues[params.id]}></TextArea>
|
| 44 |
+
{:else if params.field === FieldType.checkbox}
|
| 45 |
+
<Checkbox {params} bind:value={pipelineValues[params.id]}></Checkbox>
|
| 46 |
{/if}
|
| 47 |
{/each}
|
| 48 |
{/if}
|
frontend/src/lib/components/SeedInput.svelte
CHANGED
|
@@ -16,5 +16,5 @@
|
|
| 16 |
name="seed"
|
| 17 |
class="col-span-2 rounded-md border border-gray-700 p-2 text-right font-light dark:text-black"
|
| 18 |
/>
|
| 19 |
-
<Button on:click={randomize}>
|
| 20 |
</div>
|
|
|
|
| 16 |
name="seed"
|
| 17 |
class="col-span-2 rounded-md border border-gray-700 p-2 text-right font-light dark:text-black"
|
| 18 |
/>
|
| 19 |
+
<Button on:click={randomize}>Rand</Button>
|
| 20 |
</div>
|
frontend/src/lib/components/VideoInput.svelte
CHANGED
|
@@ -1,4 +1,73 @@
|
|
| 1 |
<script lang="ts">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
</script>
|
| 3 |
|
| 4 |
-
<video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
<script lang="ts">
|
| 2 |
+
import 'rvfc-polyfill';
|
| 3 |
+
import { onMount, onDestroy } from 'svelte';
|
| 4 |
+
import {
|
| 5 |
+
mediaStreamState,
|
| 6 |
+
mediaStreamActions,
|
| 7 |
+
isMediaStreaming,
|
| 8 |
+
MediaStreamStatus,
|
| 9 |
+
onFrameChangeStore
|
| 10 |
+
} from '$lib/mediaStream';
|
| 11 |
+
|
| 12 |
+
$: mediaStream = $mediaStreamState.mediaStream;
|
| 13 |
+
|
| 14 |
+
let videoEl: HTMLVideoElement;
|
| 15 |
+
let videoFrameCallbackId: number;
|
| 16 |
+
const WIDTH = 512;
|
| 17 |
+
const HEIGHT = 512;
|
| 18 |
+
|
| 19 |
+
onDestroy(() => {
|
| 20 |
+
if (videoFrameCallbackId) videoEl.cancelVideoFrameCallback(videoFrameCallbackId);
|
| 21 |
+
});
|
| 22 |
+
|
| 23 |
+
function srcObject(node: HTMLVideoElement, stream: MediaStream) {
|
| 24 |
+
node.srcObject = stream;
|
| 25 |
+
return {
|
| 26 |
+
update(newStream: MediaStream) {
|
| 27 |
+
if (node.srcObject != newStream) {
|
| 28 |
+
node.srcObject = newStream;
|
| 29 |
+
}
|
| 30 |
+
}
|
| 31 |
+
};
|
| 32 |
+
}
|
| 33 |
+
async function onFrameChange(now: DOMHighResTimeStamp, metadata: VideoFrameCallbackMetadata) {
|
| 34 |
+
const blob = await grapBlobImg();
|
| 35 |
+
onFrameChangeStore.set({ now, metadata, blob });
|
| 36 |
+
videoFrameCallbackId = videoEl.requestVideoFrameCallback(onFrameChange);
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
$: if ($isMediaStreaming == MediaStreamStatus.CONNECTED) {
|
| 40 |
+
videoFrameCallbackId = videoEl.requestVideoFrameCallback(onFrameChange);
|
| 41 |
+
}
|
| 42 |
+
async function grapBlobImg() {
|
| 43 |
+
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
| 44 |
+
const videoW = videoEl.videoWidth;
|
| 45 |
+
const videoH = videoEl.videoHeight;
|
| 46 |
+
const aspectRatio = WIDTH / HEIGHT;
|
| 47 |
+
|
| 48 |
+
const ctx = canvas.getContext('2d') as OffscreenCanvasRenderingContext2D;
|
| 49 |
+
ctx.drawImage(
|
| 50 |
+
videoEl,
|
| 51 |
+
videoW / 2 - (videoH * aspectRatio) / 2,
|
| 52 |
+
0,
|
| 53 |
+
videoH * aspectRatio,
|
| 54 |
+
videoH,
|
| 55 |
+
0,
|
| 56 |
+
0,
|
| 57 |
+
WIDTH,
|
| 58 |
+
HEIGHT
|
| 59 |
+
);
|
| 60 |
+
const blob = await canvas.convertToBlob({ type: 'image/jpeg', quality: 1 });
|
| 61 |
+
return blob;
|
| 62 |
+
}
|
| 63 |
</script>
|
| 64 |
|
| 65 |
+
<video
|
| 66 |
+
class="aspect-square w-full object-cover"
|
| 67 |
+
bind:this={videoEl}
|
| 68 |
+
playsinline
|
| 69 |
+
autoplay
|
| 70 |
+
muted
|
| 71 |
+
loop
|
| 72 |
+
use:srcObject={mediaStream}
|
| 73 |
+
></video>
|
frontend/src/lib/lcmLive.ts
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import { writable } from 'svelte/store';
|
| 2 |
+
import { PUBLIC_BASE_URL, PUBLIC_WSS_URL } from '$env/static/public';
|
| 3 |
+
|
| 4 |
+
export const isStreaming = writable(false);
|
| 5 |
+
export const isLCMRunning = writable(false);
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
export enum LCMLiveStatus {
|
| 9 |
+
INIT = "init",
|
| 10 |
+
CONNECTED = "connected",
|
| 11 |
+
DISCONNECTED = "disconnected",
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
interface lcmLive {
|
| 15 |
+
streamId: string | null;
|
| 16 |
+
status: LCMLiveStatus
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
const initialState: lcmLive = {
|
| 20 |
+
streamId: null,
|
| 21 |
+
status: LCMLiveStatus.INIT
|
| 22 |
+
};
|
| 23 |
+
|
| 24 |
+
export const lcmLiveState = writable(initialState);
|
| 25 |
+
|
| 26 |
+
let websocket: WebSocket | null = null;
|
| 27 |
+
export const lcmLiveActions = {
|
| 28 |
+
async start() {
|
| 29 |
+
|
| 30 |
+
isLCMRunning.set(true);
|
| 31 |
+
try {
|
| 32 |
+
const websocketURL = PUBLIC_WSS_URL ? PUBLIC_WSS_URL : `${window.location.protocol === "https:" ? "wss" : "ws"
|
| 33 |
+
}:${window.location.host}/ws`;
|
| 34 |
+
|
| 35 |
+
websocket = new WebSocket(websocketURL);
|
| 36 |
+
websocket.onopen = () => {
|
| 37 |
+
console.log("Connected to websocket");
|
| 38 |
+
};
|
| 39 |
+
websocket.onclose = () => {
|
| 40 |
+
lcmLiveState.update((state) => ({
|
| 41 |
+
...state,
|
| 42 |
+
status: LCMLiveStatus.DISCONNECTED
|
| 43 |
+
}));
|
| 44 |
+
console.log("Disconnected from websocket");
|
| 45 |
+
isLCMRunning.set(false);
|
| 46 |
+
};
|
| 47 |
+
websocket.onerror = (err) => {
|
| 48 |
+
console.error(err);
|
| 49 |
+
};
|
| 50 |
+
websocket.onmessage = (event) => {
|
| 51 |
+
const data = JSON.parse(event.data);
|
| 52 |
+
console.log("WS: ", data);
|
| 53 |
+
switch (data.status) {
|
| 54 |
+
case "success":
|
| 55 |
+
break;
|
| 56 |
+
case "start":
|
| 57 |
+
const streamId = data.userId;
|
| 58 |
+
lcmLiveState.update((state) => ({
|
| 59 |
+
...state,
|
| 60 |
+
status: LCMLiveStatus.CONNECTED,
|
| 61 |
+
streamId: streamId,
|
| 62 |
+
}));
|
| 63 |
+
break;
|
| 64 |
+
case "timeout":
|
| 65 |
+
console.log("timeout");
|
| 66 |
+
case "error":
|
| 67 |
+
console.log(data.message);
|
| 68 |
+
isLCMRunning.set(false);
|
| 69 |
+
}
|
| 70 |
+
};
|
| 71 |
+
lcmLiveState.update((state) => ({
|
| 72 |
+
...state,
|
| 73 |
+
}));
|
| 74 |
+
} catch (err) {
|
| 75 |
+
console.error(err);
|
| 76 |
+
isLCMRunning.set(false);
|
| 77 |
+
}
|
| 78 |
+
},
|
| 79 |
+
send(data: Blob | { [key: string]: any }) {
|
| 80 |
+
if (websocket && websocket.readyState === WebSocket.OPEN) {
|
| 81 |
+
if (data instanceof Blob) {
|
| 82 |
+
websocket.send(data);
|
| 83 |
+
} else {
|
| 84 |
+
websocket.send(JSON.stringify(data));
|
| 85 |
+
}
|
| 86 |
+
} else {
|
| 87 |
+
console.log("WebSocket not connected");
|
| 88 |
+
}
|
| 89 |
+
},
|
| 90 |
+
async stop() {
|
| 91 |
+
|
| 92 |
+
if (websocket) {
|
| 93 |
+
websocket.close();
|
| 94 |
+
}
|
| 95 |
+
websocket = null;
|
| 96 |
+
lcmLiveState.set({ status: LCMLiveStatus.DISCONNECTED, streamId: null });
|
| 97 |
+
isLCMRunning.set(false)
|
| 98 |
+
},
|
| 99 |
+
};
|
frontend/src/lib/mediaStream.ts
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import { writable, type Writable } from 'svelte/store';
|
| 2 |
+
|
| 3 |
+
export enum MediaStreamStatus {
|
| 4 |
+
INIT = "init",
|
| 5 |
+
CONNECTED = "connected",
|
| 6 |
+
DISCONNECTED = "disconnected",
|
| 7 |
+
}
|
| 8 |
+
export const onFrameChangeStore: Writable<{ now: Number, metadata: VideoFrameCallbackMetadata, blob: Blob }> = writable();
|
| 9 |
+
export const isMediaStreaming = writable(MediaStreamStatus.INIT);
|
| 10 |
+
|
| 11 |
+
interface mediaStream {
|
| 12 |
+
mediaStream: MediaStream | null;
|
| 13 |
+
status: MediaStreamStatus
|
| 14 |
+
devices: MediaDeviceInfo[];
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
const initialState: mediaStream = {
|
| 18 |
+
mediaStream: null,
|
| 19 |
+
status: MediaStreamStatus.INIT,
|
| 20 |
+
devices: [],
|
| 21 |
+
};
|
| 22 |
+
|
| 23 |
+
export const mediaStreamState = writable(initialState);
|
| 24 |
+
|
| 25 |
+
export const mediaStreamActions = {
|
| 26 |
+
async enumerateDevices() {
|
| 27 |
+
console.log("Enumerating devices");
|
| 28 |
+
await navigator.mediaDevices.enumerateDevices()
|
| 29 |
+
.then(devices => {
|
| 30 |
+
const cameras = devices.filter(device => device.kind === 'videoinput');
|
| 31 |
+
console.log("Cameras: ", cameras);
|
| 32 |
+
mediaStreamState.update((state) => ({
|
| 33 |
+
...state,
|
| 34 |
+
devices: cameras,
|
| 35 |
+
}));
|
| 36 |
+
})
|
| 37 |
+
.catch(err => {
|
| 38 |
+
console.error(err);
|
| 39 |
+
});
|
| 40 |
+
},
|
| 41 |
+
async start(mediaDevicedID?: string) {
|
| 42 |
+
const constraints = {
|
| 43 |
+
audio: false,
|
| 44 |
+
video: {
|
| 45 |
+
width: 1024, height: 1024, deviceId: mediaDevicedID
|
| 46 |
+
}
|
| 47 |
+
};
|
| 48 |
+
|
| 49 |
+
await navigator.mediaDevices
|
| 50 |
+
.getUserMedia(constraints)
|
| 51 |
+
.then((mediaStream) => {
|
| 52 |
+
mediaStreamState.update((state) => ({
|
| 53 |
+
...state,
|
| 54 |
+
mediaStream: mediaStream,
|
| 55 |
+
status: MediaStreamStatus.CONNECTED,
|
| 56 |
+
}));
|
| 57 |
+
isMediaStreaming.set(MediaStreamStatus.CONNECTED);
|
| 58 |
+
})
|
| 59 |
+
.catch((err) => {
|
| 60 |
+
console.error(`${err.name}: ${err.message}`);
|
| 61 |
+
isMediaStreaming.set(MediaStreamStatus.DISCONNECTED);
|
| 62 |
+
});
|
| 63 |
+
},
|
| 64 |
+
async switchCamera(mediaDevicedID: string) {
|
| 65 |
+
const constraints = {
|
| 66 |
+
audio: false,
|
| 67 |
+
video: { width: 1024, height: 1024, deviceId: mediaDevicedID }
|
| 68 |
+
};
|
| 69 |
+
await navigator.mediaDevices
|
| 70 |
+
.getUserMedia(constraints)
|
| 71 |
+
.then((mediaStream) => {
|
| 72 |
+
mediaStreamState.update((state) => ({
|
| 73 |
+
...state,
|
| 74 |
+
mediaStream: mediaStream,
|
| 75 |
+
status: MediaStreamStatus.CONNECTED,
|
| 76 |
+
}));
|
| 77 |
+
})
|
| 78 |
+
.catch((err) => {
|
| 79 |
+
console.error(`${err.name}: ${err.message}`);
|
| 80 |
+
});
|
| 81 |
+
},
|
| 82 |
+
async stop() {
|
| 83 |
+
navigator.mediaDevices.getUserMedia({ video: true }).then((mediaStream) => {
|
| 84 |
+
mediaStream.getTracks().forEach((track) => track.stop());
|
| 85 |
+
});
|
| 86 |
+
mediaStreamState.update((state) => ({
|
| 87 |
+
...state,
|
| 88 |
+
mediaStream: null,
|
| 89 |
+
status: MediaStreamStatus.DISCONNECTED,
|
| 90 |
+
}));
|
| 91 |
+
isMediaStreaming.set(MediaStreamStatus.DISCONNECTED);
|
| 92 |
+
},
|
| 93 |
+
};
|
frontend/src/lib/types.ts
CHANGED
|
@@ -2,6 +2,7 @@ export const enum FieldType {
|
|
| 2 |
range = "range",
|
| 3 |
seed = "seed",
|
| 4 |
textarea = "textarea",
|
|
|
|
| 5 |
}
|
| 6 |
|
| 7 |
export interface FieldProps {
|
|
@@ -13,6 +14,7 @@ export interface FieldProps {
|
|
| 13 |
step?: number;
|
| 14 |
disabled?: boolean;
|
| 15 |
hide?: boolean;
|
|
|
|
| 16 |
}
|
| 17 |
export interface PipelineInfo {
|
| 18 |
name: string;
|
|
|
|
| 2 |
range = "range",
|
| 3 |
seed = "seed",
|
| 4 |
textarea = "textarea",
|
| 5 |
+
checkbox = "checkbox",
|
| 6 |
}
|
| 7 |
|
| 8 |
export interface FieldProps {
|
|
|
|
| 14 |
step?: number;
|
| 15 |
disabled?: boolean;
|
| 16 |
hide?: boolean;
|
| 17 |
+
id: string;
|
| 18 |
}
|
| 19 |
export interface PipelineInfo {
|
| 20 |
name: string;
|
frontend/src/lib/utils.ts
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
export function LCMLive(webcamVideo, liveImage) {
|
| 2 |
+
let websocket: WebSocket;
|
| 3 |
+
|
| 4 |
+
async function start() {
|
| 5 |
+
return new Promise((resolve, reject) => {
|
| 6 |
+
const websocketURL = `${window.location.protocol === "https:" ? "wss" : "ws"
|
| 7 |
+
}:${window.location.host}/ws`;
|
| 8 |
+
|
| 9 |
+
const socket = new WebSocket(websocketURL);
|
| 10 |
+
socket.onopen = () => {
|
| 11 |
+
console.log("Connected to websocket");
|
| 12 |
+
};
|
| 13 |
+
socket.onclose = () => {
|
| 14 |
+
console.log("Disconnected from websocket");
|
| 15 |
+
stop();
|
| 16 |
+
resolve({ "status": "disconnected" });
|
| 17 |
+
};
|
| 18 |
+
socket.onerror = (err) => {
|
| 19 |
+
console.error(err);
|
| 20 |
+
reject(err);
|
| 21 |
+
};
|
| 22 |
+
socket.onmessage = (event) => {
|
| 23 |
+
const data = JSON.parse(event.data);
|
| 24 |
+
switch (data.status) {
|
| 25 |
+
case "success":
|
| 26 |
+
break;
|
| 27 |
+
case "start":
|
| 28 |
+
const userId = data.userId;
|
| 29 |
+
initVideoStream(userId);
|
| 30 |
+
break;
|
| 31 |
+
case "timeout":
|
| 32 |
+
stop();
|
| 33 |
+
resolve({ "status": "timeout" });
|
| 34 |
+
case "error":
|
| 35 |
+
stop();
|
| 36 |
+
reject(data.message);
|
| 37 |
+
|
| 38 |
+
}
|
| 39 |
+
};
|
| 40 |
+
websocket = socket;
|
| 41 |
+
})
|
| 42 |
+
}
|
| 43 |
+
function switchCamera() {
|
| 44 |
+
const constraints = {
|
| 45 |
+
audio: false,
|
| 46 |
+
video: { width: 1024, height: 1024, deviceId: mediaDevices[webcamsEl.value].deviceId }
|
| 47 |
+
};
|
| 48 |
+
navigator.mediaDevices
|
| 49 |
+
.getUserMedia(constraints)
|
| 50 |
+
.then((mediaStream) => {
|
| 51 |
+
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
| 52 |
+
webcamVideo.srcObject = mediaStream;
|
| 53 |
+
webcamVideo.onloadedmetadata = () => {
|
| 54 |
+
webcamVideo.play();
|
| 55 |
+
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
| 56 |
+
};
|
| 57 |
+
})
|
| 58 |
+
.catch((err) => {
|
| 59 |
+
console.error(`${err.name}: ${err.message}`);
|
| 60 |
+
});
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
async function videoTimeUpdateHandler() {
|
| 64 |
+
const dimension = getValue("input[name=dimension]:checked");
|
| 65 |
+
const [WIDTH, HEIGHT] = JSON.parse(dimension);
|
| 66 |
+
|
| 67 |
+
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
| 68 |
+
const videoW = webcamVideo.videoWidth;
|
| 69 |
+
const videoH = webcamVideo.videoHeight;
|
| 70 |
+
const aspectRatio = WIDTH / HEIGHT;
|
| 71 |
+
|
| 72 |
+
const ctx = canvas.getContext("2d");
|
| 73 |
+
ctx.drawImage(webcamVideo, videoW / 2 - videoH * aspectRatio / 2, 0, videoH * aspectRatio, videoH, 0, 0, WIDTH, HEIGHT)
|
| 74 |
+
const blob = await canvas.convertToBlob({ type: "image/jpeg", quality: 1 });
|
| 75 |
+
websocket.send(blob);
|
| 76 |
+
websocket.send(JSON.stringify({
|
| 77 |
+
"seed": getValue("#seed"),
|
| 78 |
+
"prompt": getValue("#prompt"),
|
| 79 |
+
"guidance_scale": getValue("#guidance-scale"),
|
| 80 |
+
"strength": getValue("#strength"),
|
| 81 |
+
"steps": getValue("#steps"),
|
| 82 |
+
"lcm_steps": getValue("#lcm_steps"),
|
| 83 |
+
"width": WIDTH,
|
| 84 |
+
"height": HEIGHT,
|
| 85 |
+
"controlnet_scale": getValue("#controlnet_scale"),
|
| 86 |
+
"controlnet_start": getValue("#controlnet_start"),
|
| 87 |
+
"controlnet_end": getValue("#controlnet_end"),
|
| 88 |
+
"canny_low_threshold": getValue("#canny_low_threshold"),
|
| 89 |
+
"canny_high_threshold": getValue("#canny_high_threshold"),
|
| 90 |
+
"debug_canny": getValue("#debug_canny")
|
| 91 |
+
}));
|
| 92 |
+
}
|
| 93 |
+
let mediaDevices = [];
|
| 94 |
+
async function initVideoStream(userId) {
|
| 95 |
+
liveImage.src = `/stream/${userId}`;
|
| 96 |
+
await navigator.mediaDevices.enumerateDevices()
|
| 97 |
+
.then(devices => {
|
| 98 |
+
const cameras = devices.filter(device => device.kind === 'videoinput');
|
| 99 |
+
mediaDevices = cameras;
|
| 100 |
+
webcamsEl.innerHTML = "";
|
| 101 |
+
cameras.forEach((camera, index) => {
|
| 102 |
+
const option = document.createElement("option");
|
| 103 |
+
option.value = index;
|
| 104 |
+
option.innerText = camera.label;
|
| 105 |
+
webcamsEl.appendChild(option);
|
| 106 |
+
option.selected = index === 0;
|
| 107 |
+
});
|
| 108 |
+
webcamsEl.addEventListener("change", switchCamera);
|
| 109 |
+
})
|
| 110 |
+
.catch(err => {
|
| 111 |
+
console.error(err);
|
| 112 |
+
});
|
| 113 |
+
const constraints = {
|
| 114 |
+
audio: false,
|
| 115 |
+
video: { width: 1024, height: 1024, deviceId: mediaDevices[0].deviceId }
|
| 116 |
+
};
|
| 117 |
+
navigator.mediaDevices
|
| 118 |
+
.getUserMedia(constraints)
|
| 119 |
+
.then((mediaStream) => {
|
| 120 |
+
webcamVideo.srcObject = mediaStream;
|
| 121 |
+
webcamVideo.onloadedmetadata = () => {
|
| 122 |
+
webcamVideo.play();
|
| 123 |
+
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
| 124 |
+
};
|
| 125 |
+
})
|
| 126 |
+
.catch((err) => {
|
| 127 |
+
console.error(`${err.name}: ${err.message}`);
|
| 128 |
+
});
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
async function stop() {
|
| 133 |
+
websocket.close();
|
| 134 |
+
navigator.mediaDevices.getUserMedia({ video: true }).then((mediaStream) => {
|
| 135 |
+
mediaStream.getTracks().forEach((track) => track.stop());
|
| 136 |
+
});
|
| 137 |
+
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
| 138 |
+
webcamsEl.removeEventListener("change", switchCamera);
|
| 139 |
+
webcamVideo.srcObject = null;
|
| 140 |
+
}
|
| 141 |
+
return {
|
| 142 |
+
start,
|
| 143 |
+
stop
|
| 144 |
+
}
|
| 145 |
+
}
|
frontend/src/routes/+page.svelte
CHANGED
|
@@ -7,6 +7,13 @@
|
|
| 7 |
import Button from '$lib/components/Button.svelte';
|
| 8 |
import PipelineOptions from '$lib/components/PipelineOptions.svelte';
|
| 9 |
import Spinner from '$lib/icons/spinner.svelte';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
let pipelineParams: FieldProps[];
|
| 12 |
let pipelineInfo: PipelineInfo;
|
|
@@ -21,11 +28,58 @@
|
|
| 21 |
pipelineParams = Object.values(settings.input_params.properties);
|
| 22 |
pipelineInfo = settings.info.properties;
|
| 23 |
pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
|
|
|
|
| 24 |
console.log('SETTINGS', pipelineInfo);
|
| 25 |
}
|
| 26 |
|
| 27 |
-
$: {
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
}
|
| 30 |
</script>
|
| 31 |
|
|
@@ -58,19 +112,26 @@
|
|
| 58 |
</p>
|
| 59 |
</article>
|
| 60 |
{#if pipelineParams}
|
| 61 |
-
<
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
<PipelineOptions {pipelineParams} bind:pipelineValues></PipelineOptions>
|
| 70 |
<div class="flex gap-3">
|
| 71 |
-
<Button>
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
</div>
|
| 75 |
|
| 76 |
<ImagePlayer>
|
|
|
|
| 7 |
import Button from '$lib/components/Button.svelte';
|
| 8 |
import PipelineOptions from '$lib/components/PipelineOptions.svelte';
|
| 9 |
import Spinner from '$lib/icons/spinner.svelte';
|
| 10 |
+
import { isLCMRunning, lcmLiveState, lcmLiveActions, LCMLiveStatus } from '$lib/lcmLive';
|
| 11 |
+
import {
|
| 12 |
+
mediaStreamState,
|
| 13 |
+
mediaStreamActions,
|
| 14 |
+
isMediaStreaming,
|
| 15 |
+
onFrameChangeStore
|
| 16 |
+
} from '$lib/mediaStream';
|
| 17 |
|
| 18 |
let pipelineParams: FieldProps[];
|
| 19 |
let pipelineInfo: PipelineInfo;
|
|
|
|
| 28 |
pipelineParams = Object.values(settings.input_params.properties);
|
| 29 |
pipelineInfo = settings.info.properties;
|
| 30 |
pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
|
| 31 |
+
console.log('PARAMS', pipelineParams);
|
| 32 |
console.log('SETTINGS', pipelineInfo);
|
| 33 |
}
|
| 34 |
|
| 35 |
+
// $: {
|
| 36 |
+
// console.log('isLCMRunning', $isLCMRunning);
|
| 37 |
+
// }
|
| 38 |
+
// $: {
|
| 39 |
+
// console.log('lcmLiveState', $lcmLiveState);
|
| 40 |
+
// }
|
| 41 |
+
// $: {
|
| 42 |
+
// console.log('mediaStreamState', $mediaStreamState);
|
| 43 |
+
// }
|
| 44 |
+
// $: if ($lcmLiveState.status === LCMLiveStatus.CONNECTED) {
|
| 45 |
+
// lcmLiveActions.send(pipelineValues);
|
| 46 |
+
// }
|
| 47 |
+
onFrameChangeStore.subscribe(async (frame) => {
|
| 48 |
+
if ($lcmLiveState.status === LCMLiveStatus.CONNECTED) {
|
| 49 |
+
lcmLiveActions.send(pipelineValues);
|
| 50 |
+
lcmLiveActions.send(frame.blob);
|
| 51 |
+
}
|
| 52 |
+
});
|
| 53 |
+
let startBt: Button;
|
| 54 |
+
let stopBt: Button;
|
| 55 |
+
let snapShotBt: Button;
|
| 56 |
+
|
| 57 |
+
async function toggleLcmLive() {
|
| 58 |
+
if (!$isLCMRunning) {
|
| 59 |
+
await mediaStreamActions.enumerateDevices();
|
| 60 |
+
await mediaStreamActions.start();
|
| 61 |
+
lcmLiveActions.start();
|
| 62 |
+
} else {
|
| 63 |
+
mediaStreamActions.stop();
|
| 64 |
+
lcmLiveActions.stop();
|
| 65 |
+
}
|
| 66 |
+
}
|
| 67 |
+
async function startLcmLive() {
|
| 68 |
+
try {
|
| 69 |
+
$isLCMRunning = true;
|
| 70 |
+
// const res = await lcmLive.start();
|
| 71 |
+
$isLCMRunning = false;
|
| 72 |
+
// if (res.status === "timeout")
|
| 73 |
+
// toggleMessage("success")
|
| 74 |
+
} catch (err) {
|
| 75 |
+
console.log(err);
|
| 76 |
+
// toggleMessage("error")
|
| 77 |
+
$isLCMRunning = false;
|
| 78 |
+
}
|
| 79 |
+
}
|
| 80 |
+
async function stopLcmLive() {
|
| 81 |
+
// await lcmLive.stop();
|
| 82 |
+
$isLCMRunning = false;
|
| 83 |
}
|
| 84 |
</script>
|
| 85 |
|
|
|
|
| 112 |
</p>
|
| 113 |
</article>
|
| 114 |
{#if pipelineParams}
|
| 115 |
+
<header>
|
| 116 |
+
<h2 class="font-medium">Prompt</h2>
|
| 117 |
+
<p class="text-sm text-gray-500">
|
| 118 |
+
Change the prompt to generate different images, accepts <a
|
| 119 |
+
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
|
| 120 |
+
target="_blank"
|
| 121 |
+
class="text-blue-500 underline hover:no-underline">Compel</a
|
| 122 |
+
> syntax.
|
| 123 |
+
</p>
|
| 124 |
+
</header>
|
| 125 |
<PipelineOptions {pipelineParams} bind:pipelineValues></PipelineOptions>
|
| 126 |
<div class="flex gap-3">
|
| 127 |
+
<Button on:click={toggleLcmLive}>
|
| 128 |
+
{#if $isLCMRunning}
|
| 129 |
+
Stop
|
| 130 |
+
{:else}
|
| 131 |
+
Start
|
| 132 |
+
{/if}
|
| 133 |
+
</Button>
|
| 134 |
+
<Button disabled={$isLCMRunning} classList={'ml-auto'}>Snapshot</Button>
|
| 135 |
</div>
|
| 136 |
|
| 137 |
<ImagePlayer>
|
latent_consistency_controlnet.py
DELETED
|
@@ -1,1100 +0,0 @@
|
|
| 1 |
-
# from https://github.com/taabata/LCM_Inpaint_Outpaint_Comfy/blob/main/LCM/pipeline_cn.py
|
| 2 |
-
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
| 17 |
-
# and https://github.com/hojonathanho/diffusion
|
| 18 |
-
|
| 19 |
-
import math
|
| 20 |
-
from dataclasses import dataclass
|
| 21 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 22 |
-
|
| 23 |
-
import numpy as np
|
| 24 |
-
import torch
|
| 25 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 26 |
-
|
| 27 |
-
from diffusers import (
|
| 28 |
-
AutoencoderKL,
|
| 29 |
-
ConfigMixin,
|
| 30 |
-
DiffusionPipeline,
|
| 31 |
-
SchedulerMixin,
|
| 32 |
-
UNet2DConditionModel,
|
| 33 |
-
ControlNetModel,
|
| 34 |
-
logging,
|
| 35 |
-
)
|
| 36 |
-
from diffusers.configuration_utils import register_to_config
|
| 37 |
-
from diffusers.image_processor import VaeImageProcessor, PipelineImageInput
|
| 38 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 39 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
| 40 |
-
StableDiffusionSafetyChecker,
|
| 41 |
-
)
|
| 42 |
-
from diffusers.utils import BaseOutput
|
| 43 |
-
|
| 44 |
-
from diffusers.utils.torch_utils import randn_tensor, is_compiled_module
|
| 45 |
-
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
import PIL.Image
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 55 |
-
def retrieve_latents(encoder_output, generator):
|
| 56 |
-
if hasattr(encoder_output, "latent_dist"):
|
| 57 |
-
return encoder_output.latent_dist.sample(generator)
|
| 58 |
-
elif hasattr(encoder_output, "latents"):
|
| 59 |
-
return encoder_output.latents
|
| 60 |
-
else:
|
| 61 |
-
raise AttributeError("Could not access latents of provided encoder_output")
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
class LatentConsistencyModelPipeline_controlnet(DiffusionPipeline):
|
| 65 |
-
_optional_components = ["scheduler"]
|
| 66 |
-
|
| 67 |
-
def __init__(
|
| 68 |
-
self,
|
| 69 |
-
vae: AutoencoderKL,
|
| 70 |
-
text_encoder: CLIPTextModel,
|
| 71 |
-
tokenizer: CLIPTokenizer,
|
| 72 |
-
controlnet: Union[
|
| 73 |
-
ControlNetModel,
|
| 74 |
-
List[ControlNetModel],
|
| 75 |
-
Tuple[ControlNetModel],
|
| 76 |
-
MultiControlNetModel,
|
| 77 |
-
],
|
| 78 |
-
unet: UNet2DConditionModel,
|
| 79 |
-
scheduler: "LCMScheduler",
|
| 80 |
-
safety_checker: StableDiffusionSafetyChecker,
|
| 81 |
-
feature_extractor: CLIPImageProcessor,
|
| 82 |
-
requires_safety_checker: bool = True,
|
| 83 |
-
):
|
| 84 |
-
super().__init__()
|
| 85 |
-
|
| 86 |
-
scheduler = (
|
| 87 |
-
scheduler
|
| 88 |
-
if scheduler is not None
|
| 89 |
-
else LCMScheduler_X(
|
| 90 |
-
beta_start=0.00085,
|
| 91 |
-
beta_end=0.0120,
|
| 92 |
-
beta_schedule="scaled_linear",
|
| 93 |
-
prediction_type="epsilon",
|
| 94 |
-
)
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
self.register_modules(
|
| 98 |
-
vae=vae,
|
| 99 |
-
text_encoder=text_encoder,
|
| 100 |
-
tokenizer=tokenizer,
|
| 101 |
-
unet=unet,
|
| 102 |
-
controlnet=controlnet,
|
| 103 |
-
scheduler=scheduler,
|
| 104 |
-
safety_checker=safety_checker,
|
| 105 |
-
feature_extractor=feature_extractor,
|
| 106 |
-
)
|
| 107 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 108 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 109 |
-
self.control_image_processor = VaeImageProcessor(
|
| 110 |
-
vae_scale_factor=self.vae_scale_factor,
|
| 111 |
-
do_convert_rgb=True,
|
| 112 |
-
do_normalize=False,
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
def _encode_prompt(
|
| 116 |
-
self,
|
| 117 |
-
prompt,
|
| 118 |
-
device,
|
| 119 |
-
num_images_per_prompt,
|
| 120 |
-
prompt_embeds: None,
|
| 121 |
-
):
|
| 122 |
-
r"""
|
| 123 |
-
Encodes the prompt into text encoder hidden states.
|
| 124 |
-
Args:
|
| 125 |
-
prompt (`str` or `List[str]`, *optional*):
|
| 126 |
-
prompt to be encoded
|
| 127 |
-
device: (`torch.device`):
|
| 128 |
-
torch device
|
| 129 |
-
num_images_per_prompt (`int`):
|
| 130 |
-
number of images that should be generated per prompt
|
| 131 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 132 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 133 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
| 134 |
-
"""
|
| 135 |
-
|
| 136 |
-
if prompt is not None and isinstance(prompt, str):
|
| 137 |
-
pass
|
| 138 |
-
elif prompt is not None and isinstance(prompt, list):
|
| 139 |
-
len(prompt)
|
| 140 |
-
else:
|
| 141 |
-
prompt_embeds.shape[0]
|
| 142 |
-
|
| 143 |
-
if prompt_embeds is None:
|
| 144 |
-
text_inputs = self.tokenizer(
|
| 145 |
-
prompt,
|
| 146 |
-
padding="max_length",
|
| 147 |
-
max_length=self.tokenizer.model_max_length,
|
| 148 |
-
truncation=True,
|
| 149 |
-
return_tensors="pt",
|
| 150 |
-
)
|
| 151 |
-
text_input_ids = text_inputs.input_ids
|
| 152 |
-
untruncated_ids = self.tokenizer(
|
| 153 |
-
prompt, padding="longest", return_tensors="pt"
|
| 154 |
-
).input_ids
|
| 155 |
-
|
| 156 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
| 157 |
-
-1
|
| 158 |
-
] and not torch.equal(text_input_ids, untruncated_ids):
|
| 159 |
-
removed_text = self.tokenizer.batch_decode(
|
| 160 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 161 |
-
)
|
| 162 |
-
logger.warning(
|
| 163 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 164 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 165 |
-
)
|
| 166 |
-
|
| 167 |
-
if (
|
| 168 |
-
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 169 |
-
and self.text_encoder.config.use_attention_mask
|
| 170 |
-
):
|
| 171 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
| 172 |
-
else:
|
| 173 |
-
attention_mask = None
|
| 174 |
-
|
| 175 |
-
prompt_embeds = self.text_encoder(
|
| 176 |
-
text_input_ids.to(device),
|
| 177 |
-
attention_mask=attention_mask,
|
| 178 |
-
)
|
| 179 |
-
prompt_embeds = prompt_embeds[0]
|
| 180 |
-
|
| 181 |
-
if self.text_encoder is not None:
|
| 182 |
-
prompt_embeds_dtype = self.text_encoder.dtype
|
| 183 |
-
elif self.unet is not None:
|
| 184 |
-
prompt_embeds_dtype = self.unet.dtype
|
| 185 |
-
else:
|
| 186 |
-
prompt_embeds_dtype = prompt_embeds.dtype
|
| 187 |
-
|
| 188 |
-
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
| 189 |
-
|
| 190 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 191 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 192 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 193 |
-
prompt_embeds = prompt_embeds.view(
|
| 194 |
-
bs_embed * num_images_per_prompt, seq_len, -1
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
| 198 |
-
return prompt_embeds
|
| 199 |
-
|
| 200 |
-
def run_safety_checker(self, image, device, dtype):
|
| 201 |
-
if self.safety_checker is None:
|
| 202 |
-
has_nsfw_concept = None
|
| 203 |
-
else:
|
| 204 |
-
if torch.is_tensor(image):
|
| 205 |
-
feature_extractor_input = self.image_processor.postprocess(
|
| 206 |
-
image, output_type="pil"
|
| 207 |
-
)
|
| 208 |
-
else:
|
| 209 |
-
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
| 210 |
-
safety_checker_input = self.feature_extractor(
|
| 211 |
-
feature_extractor_input, return_tensors="pt"
|
| 212 |
-
).to(device)
|
| 213 |
-
image, has_nsfw_concept = self.safety_checker(
|
| 214 |
-
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
| 215 |
-
)
|
| 216 |
-
return image, has_nsfw_concept
|
| 217 |
-
|
| 218 |
-
def prepare_control_image(
|
| 219 |
-
self,
|
| 220 |
-
image,
|
| 221 |
-
width,
|
| 222 |
-
height,
|
| 223 |
-
batch_size,
|
| 224 |
-
num_images_per_prompt,
|
| 225 |
-
device,
|
| 226 |
-
dtype,
|
| 227 |
-
do_classifier_free_guidance=False,
|
| 228 |
-
guess_mode=False,
|
| 229 |
-
):
|
| 230 |
-
image = self.control_image_processor.preprocess(
|
| 231 |
-
image, height=height, width=width
|
| 232 |
-
).to(dtype=dtype)
|
| 233 |
-
image_batch_size = image.shape[0]
|
| 234 |
-
|
| 235 |
-
if image_batch_size == 1:
|
| 236 |
-
repeat_by = batch_size
|
| 237 |
-
else:
|
| 238 |
-
# image batch size is the same as prompt batch size
|
| 239 |
-
repeat_by = num_images_per_prompt
|
| 240 |
-
|
| 241 |
-
image = image.repeat_interleave(repeat_by, dim=0)
|
| 242 |
-
|
| 243 |
-
image = image.to(device=device, dtype=dtype)
|
| 244 |
-
|
| 245 |
-
if do_classifier_free_guidance and not guess_mode:
|
| 246 |
-
image = torch.cat([image] * 2)
|
| 247 |
-
|
| 248 |
-
return image
|
| 249 |
-
|
| 250 |
-
def prepare_latents(
|
| 251 |
-
self,
|
| 252 |
-
image,
|
| 253 |
-
timestep,
|
| 254 |
-
batch_size,
|
| 255 |
-
num_channels_latents,
|
| 256 |
-
height,
|
| 257 |
-
width,
|
| 258 |
-
dtype,
|
| 259 |
-
device,
|
| 260 |
-
latents=None,
|
| 261 |
-
generator=None,
|
| 262 |
-
):
|
| 263 |
-
shape = (
|
| 264 |
-
batch_size,
|
| 265 |
-
num_channels_latents,
|
| 266 |
-
height // self.vae_scale_factor,
|
| 267 |
-
width // self.vae_scale_factor,
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
| 271 |
-
raise ValueError(
|
| 272 |
-
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
| 273 |
-
)
|
| 274 |
-
|
| 275 |
-
image = image.to(device=device, dtype=dtype)
|
| 276 |
-
|
| 277 |
-
# batch_size = batch_size * num_images_per_prompt
|
| 278 |
-
|
| 279 |
-
if image.shape[1] == 4:
|
| 280 |
-
init_latents = image
|
| 281 |
-
|
| 282 |
-
else:
|
| 283 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
| 284 |
-
raise ValueError(
|
| 285 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 286 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 287 |
-
)
|
| 288 |
-
|
| 289 |
-
elif isinstance(generator, list):
|
| 290 |
-
init_latents = [
|
| 291 |
-
retrieve_latents(
|
| 292 |
-
self.vae.encode(image[i : i + 1]), generator=generator[i]
|
| 293 |
-
)
|
| 294 |
-
for i in range(batch_size)
|
| 295 |
-
]
|
| 296 |
-
init_latents = torch.cat(init_latents, dim=0)
|
| 297 |
-
else:
|
| 298 |
-
init_latents = retrieve_latents(
|
| 299 |
-
self.vae.encode(image), generator=generator
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
init_latents = self.vae.config.scaling_factor * init_latents
|
| 303 |
-
|
| 304 |
-
if (
|
| 305 |
-
batch_size > init_latents.shape[0]
|
| 306 |
-
and batch_size % init_latents.shape[0] == 0
|
| 307 |
-
):
|
| 308 |
-
# expand init_latents for batch_size
|
| 309 |
-
deprecation_message = (
|
| 310 |
-
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
| 311 |
-
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
| 312 |
-
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
| 313 |
-
" your script to pass as many initial images as text prompts to suppress this warning."
|
| 314 |
-
)
|
| 315 |
-
# deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
| 316 |
-
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
| 317 |
-
init_latents = torch.cat(
|
| 318 |
-
[init_latents] * additional_image_per_prompt, dim=0
|
| 319 |
-
)
|
| 320 |
-
elif (
|
| 321 |
-
batch_size > init_latents.shape[0]
|
| 322 |
-
and batch_size % init_latents.shape[0] != 0
|
| 323 |
-
):
|
| 324 |
-
raise ValueError(
|
| 325 |
-
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
| 326 |
-
)
|
| 327 |
-
else:
|
| 328 |
-
init_latents = torch.cat([init_latents], dim=0)
|
| 329 |
-
|
| 330 |
-
shape = init_latents.shape
|
| 331 |
-
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 332 |
-
|
| 333 |
-
# get latents
|
| 334 |
-
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
| 335 |
-
latents = init_latents
|
| 336 |
-
|
| 337 |
-
return latents
|
| 338 |
-
|
| 339 |
-
if latents is None:
|
| 340 |
-
latents = torch.randn(shape, dtype=dtype).to(device)
|
| 341 |
-
else:
|
| 342 |
-
latents = latents.to(device)
|
| 343 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
| 344 |
-
latents = latents * self.scheduler.init_noise_sigma
|
| 345 |
-
return latents
|
| 346 |
-
|
| 347 |
-
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
| 348 |
-
"""
|
| 349 |
-
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
| 350 |
-
Args:
|
| 351 |
-
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
| 352 |
-
embedding_dim: int: dimension of the embeddings to generate
|
| 353 |
-
dtype: data type of the generated embeddings
|
| 354 |
-
Returns:
|
| 355 |
-
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
| 356 |
-
"""
|
| 357 |
-
assert len(w.shape) == 1
|
| 358 |
-
w = w * 1000.0
|
| 359 |
-
|
| 360 |
-
half_dim = embedding_dim // 2
|
| 361 |
-
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
| 362 |
-
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
| 363 |
-
emb = w.to(dtype)[:, None] * emb[None, :]
|
| 364 |
-
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 365 |
-
if embedding_dim % 2 == 1: # zero pad
|
| 366 |
-
emb = torch.nn.functional.pad(emb, (0, 1))
|
| 367 |
-
assert emb.shape == (w.shape[0], embedding_dim)
|
| 368 |
-
return emb
|
| 369 |
-
|
| 370 |
-
def get_timesteps(self, num_inference_steps, strength, device):
|
| 371 |
-
# get the original timestep using init_timestep
|
| 372 |
-
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 373 |
-
|
| 374 |
-
t_start = max(num_inference_steps - init_timestep, 0)
|
| 375 |
-
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
| 376 |
-
|
| 377 |
-
return timesteps, num_inference_steps - t_start
|
| 378 |
-
|
| 379 |
-
@torch.no_grad()
|
| 380 |
-
def __call__(
|
| 381 |
-
self,
|
| 382 |
-
prompt: Union[str, List[str]] = None,
|
| 383 |
-
image: PipelineImageInput = None,
|
| 384 |
-
control_image: PipelineImageInput = None,
|
| 385 |
-
strength: float = 0.8,
|
| 386 |
-
height: Optional[int] = 768,
|
| 387 |
-
width: Optional[int] = 768,
|
| 388 |
-
guidance_scale: float = 7.5,
|
| 389 |
-
num_images_per_prompt: Optional[int] = 1,
|
| 390 |
-
latents: Optional[torch.FloatTensor] = None,
|
| 391 |
-
generator: Optional[torch.Generator] = None,
|
| 392 |
-
num_inference_steps: int = 4,
|
| 393 |
-
lcm_origin_steps: int = 50,
|
| 394 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 395 |
-
output_type: Optional[str] = "pil",
|
| 396 |
-
return_dict: bool = True,
|
| 397 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 398 |
-
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
| 399 |
-
guess_mode: bool = True,
|
| 400 |
-
control_guidance_start: Union[float, List[float]] = 0.0,
|
| 401 |
-
control_guidance_end: Union[float, List[float]] = 1.0,
|
| 402 |
-
):
|
| 403 |
-
controlnet = (
|
| 404 |
-
self.controlnet._orig_mod
|
| 405 |
-
if is_compiled_module(self.controlnet)
|
| 406 |
-
else self.controlnet
|
| 407 |
-
)
|
| 408 |
-
# 0. Default height and width to unet
|
| 409 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 410 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 411 |
-
if not isinstance(control_guidance_start, list) and isinstance(
|
| 412 |
-
control_guidance_end, list
|
| 413 |
-
):
|
| 414 |
-
control_guidance_start = len(control_guidance_end) * [
|
| 415 |
-
control_guidance_start
|
| 416 |
-
]
|
| 417 |
-
elif not isinstance(control_guidance_end, list) and isinstance(
|
| 418 |
-
control_guidance_start, list
|
| 419 |
-
):
|
| 420 |
-
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
| 421 |
-
elif not isinstance(control_guidance_start, list) and not isinstance(
|
| 422 |
-
control_guidance_end, list
|
| 423 |
-
):
|
| 424 |
-
mult = (
|
| 425 |
-
len(controlnet.nets)
|
| 426 |
-
if isinstance(controlnet, MultiControlNetModel)
|
| 427 |
-
else 1
|
| 428 |
-
)
|
| 429 |
-
control_guidance_start, control_guidance_end = mult * [
|
| 430 |
-
control_guidance_start
|
| 431 |
-
], mult * [control_guidance_end]
|
| 432 |
-
# 2. Define call parameters
|
| 433 |
-
if prompt is not None and isinstance(prompt, str):
|
| 434 |
-
batch_size = 1
|
| 435 |
-
elif prompt is not None and isinstance(prompt, list):
|
| 436 |
-
batch_size = len(prompt)
|
| 437 |
-
else:
|
| 438 |
-
batch_size = prompt_embeds.shape[0]
|
| 439 |
-
|
| 440 |
-
device = self._execution_device
|
| 441 |
-
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
| 442 |
-
global_pool_conditions = (
|
| 443 |
-
controlnet.config.global_pool_conditions
|
| 444 |
-
if isinstance(controlnet, ControlNetModel)
|
| 445 |
-
else controlnet.nets[0].config.global_pool_conditions
|
| 446 |
-
)
|
| 447 |
-
guess_mode = guess_mode or global_pool_conditions
|
| 448 |
-
# 3. Encode input prompt
|
| 449 |
-
prompt_embeds = self._encode_prompt(
|
| 450 |
-
prompt,
|
| 451 |
-
device,
|
| 452 |
-
num_images_per_prompt,
|
| 453 |
-
prompt_embeds=prompt_embeds,
|
| 454 |
-
)
|
| 455 |
-
|
| 456 |
-
# 3.5 encode image
|
| 457 |
-
image = self.image_processor.preprocess(image)
|
| 458 |
-
|
| 459 |
-
if isinstance(controlnet, ControlNetModel):
|
| 460 |
-
control_image = self.prepare_control_image(
|
| 461 |
-
image=control_image,
|
| 462 |
-
width=width,
|
| 463 |
-
height=height,
|
| 464 |
-
batch_size=batch_size * num_images_per_prompt,
|
| 465 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 466 |
-
device=device,
|
| 467 |
-
dtype=controlnet.dtype,
|
| 468 |
-
guess_mode=guess_mode,
|
| 469 |
-
)
|
| 470 |
-
elif isinstance(controlnet, MultiControlNetModel):
|
| 471 |
-
control_images = []
|
| 472 |
-
|
| 473 |
-
for control_image_ in control_image:
|
| 474 |
-
control_image_ = self.prepare_control_image(
|
| 475 |
-
image=control_image_,
|
| 476 |
-
width=width,
|
| 477 |
-
height=height,
|
| 478 |
-
batch_size=batch_size * num_images_per_prompt,
|
| 479 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 480 |
-
device=device,
|
| 481 |
-
dtype=controlnet.dtype,
|
| 482 |
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 483 |
-
guess_mode=guess_mode,
|
| 484 |
-
)
|
| 485 |
-
|
| 486 |
-
control_images.append(control_image_)
|
| 487 |
-
|
| 488 |
-
control_image = control_images
|
| 489 |
-
else:
|
| 490 |
-
assert False
|
| 491 |
-
|
| 492 |
-
# 4. Prepare timesteps
|
| 493 |
-
self.scheduler.set_timesteps(strength, num_inference_steps, lcm_origin_steps)
|
| 494 |
-
# timesteps = self.scheduler.timesteps
|
| 495 |
-
# timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, 1.0, device)
|
| 496 |
-
timesteps = self.scheduler.timesteps
|
| 497 |
-
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
| 498 |
-
|
| 499 |
-
print("timesteps: ", timesteps)
|
| 500 |
-
|
| 501 |
-
# 5. Prepare latent variable
|
| 502 |
-
num_channels_latents = self.unet.config.in_channels
|
| 503 |
-
latents = self.prepare_latents(
|
| 504 |
-
image,
|
| 505 |
-
latent_timestep,
|
| 506 |
-
batch_size * num_images_per_prompt,
|
| 507 |
-
num_channels_latents,
|
| 508 |
-
height,
|
| 509 |
-
width,
|
| 510 |
-
prompt_embeds.dtype,
|
| 511 |
-
device,
|
| 512 |
-
latents,
|
| 513 |
-
)
|
| 514 |
-
bs = batch_size * num_images_per_prompt
|
| 515 |
-
|
| 516 |
-
# 6. Get Guidance Scale Embedding
|
| 517 |
-
w = torch.tensor(guidance_scale).repeat(bs)
|
| 518 |
-
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(
|
| 519 |
-
device=device, dtype=latents.dtype
|
| 520 |
-
)
|
| 521 |
-
controlnet_keep = []
|
| 522 |
-
for i in range(len(timesteps)):
|
| 523 |
-
keeps = [
|
| 524 |
-
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
| 525 |
-
for s, e in zip(control_guidance_start, control_guidance_end)
|
| 526 |
-
]
|
| 527 |
-
controlnet_keep.append(
|
| 528 |
-
keeps[0] if isinstance(controlnet, ControlNetModel) else keeps
|
| 529 |
-
)
|
| 530 |
-
# 7. LCM MultiStep Sampling Loop:
|
| 531 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 532 |
-
for i, t in enumerate(timesteps):
|
| 533 |
-
ts = torch.full((bs,), t, device=device, dtype=torch.long)
|
| 534 |
-
latents = latents.to(prompt_embeds.dtype)
|
| 535 |
-
if guess_mode:
|
| 536 |
-
# Infer ControlNet only for the conditional batch.
|
| 537 |
-
control_model_input = latents
|
| 538 |
-
control_model_input = self.scheduler.scale_model_input(
|
| 539 |
-
control_model_input, ts
|
| 540 |
-
)
|
| 541 |
-
controlnet_prompt_embeds = prompt_embeds
|
| 542 |
-
else:
|
| 543 |
-
control_model_input = latents
|
| 544 |
-
controlnet_prompt_embeds = prompt_embeds
|
| 545 |
-
if isinstance(controlnet_keep[i], list):
|
| 546 |
-
cond_scale = [
|
| 547 |
-
c * s
|
| 548 |
-
for c, s in zip(
|
| 549 |
-
controlnet_conditioning_scale, controlnet_keep[i]
|
| 550 |
-
)
|
| 551 |
-
]
|
| 552 |
-
else:
|
| 553 |
-
controlnet_cond_scale = controlnet_conditioning_scale
|
| 554 |
-
if isinstance(controlnet_cond_scale, list):
|
| 555 |
-
controlnet_cond_scale = controlnet_cond_scale[0]
|
| 556 |
-
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
| 557 |
-
|
| 558 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 559 |
-
control_model_input,
|
| 560 |
-
ts,
|
| 561 |
-
encoder_hidden_states=controlnet_prompt_embeds,
|
| 562 |
-
controlnet_cond=control_image,
|
| 563 |
-
conditioning_scale=cond_scale,
|
| 564 |
-
guess_mode=guess_mode,
|
| 565 |
-
return_dict=False,
|
| 566 |
-
)
|
| 567 |
-
# model prediction (v-prediction, eps, x)
|
| 568 |
-
model_pred = self.unet(
|
| 569 |
-
latents,
|
| 570 |
-
ts,
|
| 571 |
-
timestep_cond=w_embedding,
|
| 572 |
-
encoder_hidden_states=prompt_embeds,
|
| 573 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
| 574 |
-
down_block_additional_residuals=down_block_res_samples,
|
| 575 |
-
mid_block_additional_residual=mid_block_res_sample,
|
| 576 |
-
return_dict=False,
|
| 577 |
-
)[0]
|
| 578 |
-
|
| 579 |
-
# compute the previous noisy sample x_t -> x_t-1
|
| 580 |
-
latents, denoised = self.scheduler.step(
|
| 581 |
-
model_pred, i, t, latents, return_dict=False
|
| 582 |
-
)
|
| 583 |
-
|
| 584 |
-
# # call the callback, if provided
|
| 585 |
-
# if i == len(timesteps) - 1:
|
| 586 |
-
progress_bar.update()
|
| 587 |
-
|
| 588 |
-
denoised = denoised.to(prompt_embeds.dtype)
|
| 589 |
-
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 590 |
-
self.unet.to("cpu")
|
| 591 |
-
self.controlnet.to("cpu")
|
| 592 |
-
torch.cuda.empty_cache()
|
| 593 |
-
if not output_type == "latent":
|
| 594 |
-
image = self.vae.decode(
|
| 595 |
-
denoised / self.vae.config.scaling_factor, return_dict=False
|
| 596 |
-
)[0]
|
| 597 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
| 598 |
-
image, device, prompt_embeds.dtype
|
| 599 |
-
)
|
| 600 |
-
else:
|
| 601 |
-
image = denoised
|
| 602 |
-
has_nsfw_concept = None
|
| 603 |
-
|
| 604 |
-
if has_nsfw_concept is None:
|
| 605 |
-
do_denormalize = [True] * image.shape[0]
|
| 606 |
-
else:
|
| 607 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 608 |
-
|
| 609 |
-
image = self.image_processor.postprocess(
|
| 610 |
-
image, output_type=output_type, do_denormalize=do_denormalize
|
| 611 |
-
)
|
| 612 |
-
|
| 613 |
-
if not return_dict:
|
| 614 |
-
return (image, has_nsfw_concept)
|
| 615 |
-
|
| 616 |
-
return StableDiffusionPipelineOutput(
|
| 617 |
-
images=image, nsfw_content_detected=has_nsfw_concept
|
| 618 |
-
)
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
@dataclass
|
| 622 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
| 623 |
-
class LCMSchedulerOutput(BaseOutput):
|
| 624 |
-
"""
|
| 625 |
-
Output class for the scheduler's `step` function output.
|
| 626 |
-
Args:
|
| 627 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 628 |
-
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
| 629 |
-
denoising loop.
|
| 630 |
-
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 631 |
-
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
| 632 |
-
`pred_original_sample` can be used to preview progress or for guidance.
|
| 633 |
-
"""
|
| 634 |
-
|
| 635 |
-
prev_sample: torch.FloatTensor
|
| 636 |
-
denoised: Optional[torch.FloatTensor] = None
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
| 640 |
-
def betas_for_alpha_bar(
|
| 641 |
-
num_diffusion_timesteps,
|
| 642 |
-
max_beta=0.999,
|
| 643 |
-
alpha_transform_type="cosine",
|
| 644 |
-
):
|
| 645 |
-
"""
|
| 646 |
-
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
| 647 |
-
(1-beta) over time from t = [0,1].
|
| 648 |
-
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
| 649 |
-
to that part of the diffusion process.
|
| 650 |
-
Args:
|
| 651 |
-
num_diffusion_timesteps (`int`): the number of betas to produce.
|
| 652 |
-
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
| 653 |
-
prevent singularities.
|
| 654 |
-
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
| 655 |
-
Choose from `cosine` or `exp`
|
| 656 |
-
Returns:
|
| 657 |
-
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
| 658 |
-
"""
|
| 659 |
-
if alpha_transform_type == "cosine":
|
| 660 |
-
|
| 661 |
-
def alpha_bar_fn(t):
|
| 662 |
-
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
| 663 |
-
|
| 664 |
-
elif alpha_transform_type == "exp":
|
| 665 |
-
|
| 666 |
-
def alpha_bar_fn(t):
|
| 667 |
-
return math.exp(t * -12.0)
|
| 668 |
-
|
| 669 |
-
else:
|
| 670 |
-
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
| 671 |
-
|
| 672 |
-
betas = []
|
| 673 |
-
for i in range(num_diffusion_timesteps):
|
| 674 |
-
t1 = i / num_diffusion_timesteps
|
| 675 |
-
t2 = (i + 1) / num_diffusion_timesteps
|
| 676 |
-
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
| 677 |
-
return torch.tensor(betas, dtype=torch.float32)
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
def rescale_zero_terminal_snr(betas):
|
| 681 |
-
"""
|
| 682 |
-
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
| 683 |
-
Args:
|
| 684 |
-
betas (`torch.FloatTensor`):
|
| 685 |
-
the betas that the scheduler is being initialized with.
|
| 686 |
-
Returns:
|
| 687 |
-
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
| 688 |
-
"""
|
| 689 |
-
# Convert betas to alphas_bar_sqrt
|
| 690 |
-
alphas = 1.0 - betas
|
| 691 |
-
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
| 692 |
-
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
| 693 |
-
|
| 694 |
-
# Store old values.
|
| 695 |
-
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
| 696 |
-
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
| 697 |
-
|
| 698 |
-
# Shift so the last timestep is zero.
|
| 699 |
-
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
| 700 |
-
|
| 701 |
-
# Scale so the first timestep is back to the old value.
|
| 702 |
-
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
| 703 |
-
|
| 704 |
-
# Convert alphas_bar_sqrt to betas
|
| 705 |
-
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
| 706 |
-
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
| 707 |
-
alphas = torch.cat([alphas_bar[0:1], alphas])
|
| 708 |
-
betas = 1 - alphas
|
| 709 |
-
|
| 710 |
-
return betas
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
class LCMScheduler_X(SchedulerMixin, ConfigMixin):
|
| 714 |
-
"""
|
| 715 |
-
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
| 716 |
-
non-Markovian guidance.
|
| 717 |
-
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
| 718 |
-
methods the library implements for all schedulers such as loading and saving.
|
| 719 |
-
Args:
|
| 720 |
-
num_train_timesteps (`int`, defaults to 1000):
|
| 721 |
-
The number of diffusion steps to train the model.
|
| 722 |
-
beta_start (`float`, defaults to 0.0001):
|
| 723 |
-
The starting `beta` value of inference.
|
| 724 |
-
beta_end (`float`, defaults to 0.02):
|
| 725 |
-
The final `beta` value.
|
| 726 |
-
beta_schedule (`str`, defaults to `"linear"`):
|
| 727 |
-
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
| 728 |
-
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
| 729 |
-
trained_betas (`np.ndarray`, *optional*):
|
| 730 |
-
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
| 731 |
-
clip_sample (`bool`, defaults to `True`):
|
| 732 |
-
Clip the predicted sample for numerical stability.
|
| 733 |
-
clip_sample_range (`float`, defaults to 1.0):
|
| 734 |
-
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
| 735 |
-
set_alpha_to_one (`bool`, defaults to `True`):
|
| 736 |
-
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
| 737 |
-
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
| 738 |
-
otherwise it uses the alpha value at step 0.
|
| 739 |
-
steps_offset (`int`, defaults to 0):
|
| 740 |
-
An offset added to the inference steps. You can use a combination of `offset=1` and
|
| 741 |
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
| 742 |
-
Diffusion.
|
| 743 |
-
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
| 744 |
-
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
| 745 |
-
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
| 746 |
-
Video](https://imagen.research.google/video/paper.pdf) paper).
|
| 747 |
-
thresholding (`bool`, defaults to `False`):
|
| 748 |
-
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
| 749 |
-
as Stable Diffusion.
|
| 750 |
-
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
| 751 |
-
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
| 752 |
-
sample_max_value (`float`, defaults to 1.0):
|
| 753 |
-
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
| 754 |
-
timestep_spacing (`str`, defaults to `"leading"`):
|
| 755 |
-
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
| 756 |
-
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
| 757 |
-
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
| 758 |
-
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
| 759 |
-
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
| 760 |
-
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
| 761 |
-
"""
|
| 762 |
-
|
| 763 |
-
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
| 764 |
-
order = 1
|
| 765 |
-
|
| 766 |
-
@register_to_config
|
| 767 |
-
def __init__(
|
| 768 |
-
self,
|
| 769 |
-
num_train_timesteps: int = 1000,
|
| 770 |
-
beta_start: float = 0.0001,
|
| 771 |
-
beta_end: float = 0.02,
|
| 772 |
-
beta_schedule: str = "linear",
|
| 773 |
-
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
| 774 |
-
clip_sample: bool = True,
|
| 775 |
-
set_alpha_to_one: bool = True,
|
| 776 |
-
steps_offset: int = 0,
|
| 777 |
-
prediction_type: str = "epsilon",
|
| 778 |
-
thresholding: bool = False,
|
| 779 |
-
dynamic_thresholding_ratio: float = 0.995,
|
| 780 |
-
clip_sample_range: float = 1.0,
|
| 781 |
-
sample_max_value: float = 1.0,
|
| 782 |
-
timestep_spacing: str = "leading",
|
| 783 |
-
rescale_betas_zero_snr: bool = False,
|
| 784 |
-
):
|
| 785 |
-
if trained_betas is not None:
|
| 786 |
-
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
| 787 |
-
elif beta_schedule == "linear":
|
| 788 |
-
self.betas = torch.linspace(
|
| 789 |
-
beta_start, beta_end, num_train_timesteps, dtype=torch.float32
|
| 790 |
-
)
|
| 791 |
-
elif beta_schedule == "scaled_linear":
|
| 792 |
-
# this schedule is very specific to the latent diffusion model.
|
| 793 |
-
self.betas = (
|
| 794 |
-
torch.linspace(
|
| 795 |
-
beta_start**0.5,
|
| 796 |
-
beta_end**0.5,
|
| 797 |
-
num_train_timesteps,
|
| 798 |
-
dtype=torch.float32,
|
| 799 |
-
)
|
| 800 |
-
** 2
|
| 801 |
-
)
|
| 802 |
-
elif beta_schedule == "squaredcos_cap_v2":
|
| 803 |
-
# Glide cosine schedule
|
| 804 |
-
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
| 805 |
-
else:
|
| 806 |
-
raise NotImplementedError(
|
| 807 |
-
f"{beta_schedule} does is not implemented for {self.__class__}"
|
| 808 |
-
)
|
| 809 |
-
|
| 810 |
-
# Rescale for zero SNR
|
| 811 |
-
if rescale_betas_zero_snr:
|
| 812 |
-
self.betas = rescale_zero_terminal_snr(self.betas)
|
| 813 |
-
|
| 814 |
-
self.alphas = 1.0 - self.betas
|
| 815 |
-
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
| 816 |
-
|
| 817 |
-
# At every step in ddim, we are looking into the previous alphas_cumprod
|
| 818 |
-
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
| 819 |
-
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
| 820 |
-
# whether we use the final alpha of the "non-previous" one.
|
| 821 |
-
self.final_alpha_cumprod = (
|
| 822 |
-
torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
| 823 |
-
)
|
| 824 |
-
|
| 825 |
-
# standard deviation of the initial noise distribution
|
| 826 |
-
self.init_noise_sigma = 1.0
|
| 827 |
-
|
| 828 |
-
# setable values
|
| 829 |
-
self.num_inference_steps = None
|
| 830 |
-
self.timesteps = torch.from_numpy(
|
| 831 |
-
np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)
|
| 832 |
-
)
|
| 833 |
-
|
| 834 |
-
def scale_model_input(
|
| 835 |
-
self, sample: torch.FloatTensor, timestep: Optional[int] = None
|
| 836 |
-
) -> torch.FloatTensor:
|
| 837 |
-
"""
|
| 838 |
-
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
| 839 |
-
current timestep.
|
| 840 |
-
Args:
|
| 841 |
-
sample (`torch.FloatTensor`):
|
| 842 |
-
The input sample.
|
| 843 |
-
timestep (`int`, *optional*):
|
| 844 |
-
The current timestep in the diffusion chain.
|
| 845 |
-
Returns:
|
| 846 |
-
`torch.FloatTensor`:
|
| 847 |
-
A scaled input sample.
|
| 848 |
-
"""
|
| 849 |
-
return sample
|
| 850 |
-
|
| 851 |
-
def _get_variance(self, timestep, prev_timestep):
|
| 852 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
| 853 |
-
alpha_prod_t_prev = (
|
| 854 |
-
self.alphas_cumprod[prev_timestep]
|
| 855 |
-
if prev_timestep >= 0
|
| 856 |
-
else self.final_alpha_cumprod
|
| 857 |
-
)
|
| 858 |
-
beta_prod_t = 1 - alpha_prod_t
|
| 859 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 860 |
-
|
| 861 |
-
variance = (beta_prod_t_prev / beta_prod_t) * (
|
| 862 |
-
1 - alpha_prod_t / alpha_prod_t_prev
|
| 863 |
-
)
|
| 864 |
-
|
| 865 |
-
return variance
|
| 866 |
-
|
| 867 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
| 868 |
-
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
| 869 |
-
"""
|
| 870 |
-
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
| 871 |
-
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
| 872 |
-
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
| 873 |
-
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
| 874 |
-
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
| 875 |
-
https://arxiv.org/abs/2205.11487
|
| 876 |
-
"""
|
| 877 |
-
dtype = sample.dtype
|
| 878 |
-
batch_size, channels, height, width = sample.shape
|
| 879 |
-
|
| 880 |
-
if dtype not in (torch.float32, torch.float64):
|
| 881 |
-
sample = (
|
| 882 |
-
sample.float()
|
| 883 |
-
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
| 884 |
-
|
| 885 |
-
# Flatten sample for doing quantile calculation along each image
|
| 886 |
-
sample = sample.reshape(batch_size, channels * height * width)
|
| 887 |
-
|
| 888 |
-
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
| 889 |
-
|
| 890 |
-
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
| 891 |
-
s = torch.clamp(
|
| 892 |
-
s, min=1, max=self.config.sample_max_value
|
| 893 |
-
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
| 894 |
-
|
| 895 |
-
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
| 896 |
-
sample = (
|
| 897 |
-
torch.clamp(sample, -s, s) / s
|
| 898 |
-
) # "we threshold xt0 to the range [-s, s] and then divide by s"
|
| 899 |
-
|
| 900 |
-
sample = sample.reshape(batch_size, channels, height, width)
|
| 901 |
-
sample = sample.to(dtype)
|
| 902 |
-
|
| 903 |
-
return sample
|
| 904 |
-
|
| 905 |
-
def set_timesteps(
|
| 906 |
-
self,
|
| 907 |
-
stength,
|
| 908 |
-
num_inference_steps: int,
|
| 909 |
-
lcm_origin_steps: int,
|
| 910 |
-
device: Union[str, torch.device] = None,
|
| 911 |
-
):
|
| 912 |
-
"""
|
| 913 |
-
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
| 914 |
-
Args:
|
| 915 |
-
num_inference_steps (`int`):
|
| 916 |
-
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 917 |
-
"""
|
| 918 |
-
|
| 919 |
-
if num_inference_steps > self.config.num_train_timesteps:
|
| 920 |
-
raise ValueError(
|
| 921 |
-
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
| 922 |
-
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
| 923 |
-
f" maximal {self.config.num_train_timesteps} timesteps."
|
| 924 |
-
)
|
| 925 |
-
|
| 926 |
-
self.num_inference_steps = num_inference_steps
|
| 927 |
-
|
| 928 |
-
# LCM Timesteps Setting: # Linear Spacing
|
| 929 |
-
c = self.config.num_train_timesteps // lcm_origin_steps
|
| 930 |
-
lcm_origin_timesteps = (
|
| 931 |
-
np.asarray(list(range(1, int(lcm_origin_steps * stength) + 1))) * c - 1
|
| 932 |
-
) # LCM Training Steps Schedule
|
| 933 |
-
skipping_step = max(len(lcm_origin_timesteps) // num_inference_steps, 1)
|
| 934 |
-
timesteps = lcm_origin_timesteps[::-skipping_step][
|
| 935 |
-
:num_inference_steps
|
| 936 |
-
] # LCM Inference Steps Schedule
|
| 937 |
-
|
| 938 |
-
self.timesteps = torch.from_numpy(timesteps.copy()).to(device)
|
| 939 |
-
|
| 940 |
-
def get_scalings_for_boundary_condition_discrete(self, t):
|
| 941 |
-
self.sigma_data = 0.5 # Default: 0.5
|
| 942 |
-
|
| 943 |
-
# By dividing 0.1: This is almost a delta function at t=0.
|
| 944 |
-
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2)
|
| 945 |
-
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5
|
| 946 |
-
return c_skip, c_out
|
| 947 |
-
|
| 948 |
-
def step(
|
| 949 |
-
self,
|
| 950 |
-
model_output: torch.FloatTensor,
|
| 951 |
-
timeindex: int,
|
| 952 |
-
timestep: int,
|
| 953 |
-
sample: torch.FloatTensor,
|
| 954 |
-
eta: float = 0.0,
|
| 955 |
-
use_clipped_model_output: bool = False,
|
| 956 |
-
generator=None,
|
| 957 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
| 958 |
-
return_dict: bool = True,
|
| 959 |
-
) -> Union[LCMSchedulerOutput, Tuple]:
|
| 960 |
-
"""
|
| 961 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
| 962 |
-
process from the learned model outputs (most often the predicted noise).
|
| 963 |
-
Args:
|
| 964 |
-
model_output (`torch.FloatTensor`):
|
| 965 |
-
The direct output from learned diffusion model.
|
| 966 |
-
timestep (`float`):
|
| 967 |
-
The current discrete timestep in the diffusion chain.
|
| 968 |
-
sample (`torch.FloatTensor`):
|
| 969 |
-
A current instance of a sample created by the diffusion process.
|
| 970 |
-
eta (`float`):
|
| 971 |
-
The weight of noise for added noise in diffusion step.
|
| 972 |
-
use_clipped_model_output (`bool`, defaults to `False`):
|
| 973 |
-
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
| 974 |
-
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
| 975 |
-
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
| 976 |
-
`use_clipped_model_output` has no effect.
|
| 977 |
-
generator (`torch.Generator`, *optional*):
|
| 978 |
-
A random number generator.
|
| 979 |
-
variance_noise (`torch.FloatTensor`):
|
| 980 |
-
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
| 981 |
-
itself. Useful for methods such as [`CycleDiffusion`].
|
| 982 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
| 983 |
-
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
| 984 |
-
Returns:
|
| 985 |
-
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
| 986 |
-
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
| 987 |
-
tuple is returned where the first element is the sample tensor.
|
| 988 |
-
"""
|
| 989 |
-
if self.num_inference_steps is None:
|
| 990 |
-
raise ValueError(
|
| 991 |
-
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
| 992 |
-
)
|
| 993 |
-
|
| 994 |
-
# 1. get previous step value
|
| 995 |
-
prev_timeindex = timeindex + 1
|
| 996 |
-
if prev_timeindex < len(self.timesteps):
|
| 997 |
-
prev_timestep = self.timesteps[prev_timeindex]
|
| 998 |
-
else:
|
| 999 |
-
prev_timestep = timestep
|
| 1000 |
-
|
| 1001 |
-
# 2. compute alphas, betas
|
| 1002 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
| 1003 |
-
alpha_prod_t_prev = (
|
| 1004 |
-
self.alphas_cumprod[prev_timestep]
|
| 1005 |
-
if prev_timestep >= 0
|
| 1006 |
-
else self.final_alpha_cumprod
|
| 1007 |
-
)
|
| 1008 |
-
|
| 1009 |
-
beta_prod_t = 1 - alpha_prod_t
|
| 1010 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 1011 |
-
|
| 1012 |
-
# 3. Get scalings for boundary conditions
|
| 1013 |
-
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
| 1014 |
-
|
| 1015 |
-
# 4. Different Parameterization:
|
| 1016 |
-
parameterization = self.config.prediction_type
|
| 1017 |
-
|
| 1018 |
-
if parameterization == "epsilon": # noise-prediction
|
| 1019 |
-
pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
| 1020 |
-
|
| 1021 |
-
elif parameterization == "sample": # x-prediction
|
| 1022 |
-
pred_x0 = model_output
|
| 1023 |
-
|
| 1024 |
-
elif parameterization == "v_prediction": # v-prediction
|
| 1025 |
-
pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
| 1026 |
-
|
| 1027 |
-
# 4. Denoise model output using boundary conditions
|
| 1028 |
-
denoised = c_out * pred_x0 + c_skip * sample
|
| 1029 |
-
|
| 1030 |
-
# 5. Sample z ~ N(0, I), For MultiStep Inference
|
| 1031 |
-
# Noise is not used for one-step sampling.
|
| 1032 |
-
if len(self.timesteps) > 1:
|
| 1033 |
-
noise = torch.randn(model_output.shape).to(model_output.device)
|
| 1034 |
-
prev_sample = (
|
| 1035 |
-
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
| 1036 |
-
)
|
| 1037 |
-
else:
|
| 1038 |
-
prev_sample = denoised
|
| 1039 |
-
|
| 1040 |
-
if not return_dict:
|
| 1041 |
-
return (prev_sample, denoised)
|
| 1042 |
-
|
| 1043 |
-
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
| 1044 |
-
|
| 1045 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
| 1046 |
-
def add_noise(
|
| 1047 |
-
self,
|
| 1048 |
-
original_samples: torch.FloatTensor,
|
| 1049 |
-
noise: torch.FloatTensor,
|
| 1050 |
-
timesteps: torch.IntTensor,
|
| 1051 |
-
) -> torch.FloatTensor:
|
| 1052 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
| 1053 |
-
alphas_cumprod = self.alphas_cumprod.to(
|
| 1054 |
-
device=original_samples.device, dtype=original_samples.dtype
|
| 1055 |
-
)
|
| 1056 |
-
timesteps = timesteps.to(original_samples.device)
|
| 1057 |
-
|
| 1058 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
| 1059 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
| 1060 |
-
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
| 1061 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
| 1062 |
-
|
| 1063 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
| 1064 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
| 1065 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
| 1066 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
| 1067 |
-
|
| 1068 |
-
noisy_samples = (
|
| 1069 |
-
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
| 1070 |
-
)
|
| 1071 |
-
return noisy_samples
|
| 1072 |
-
|
| 1073 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
| 1074 |
-
def get_velocity(
|
| 1075 |
-
self,
|
| 1076 |
-
sample: torch.FloatTensor,
|
| 1077 |
-
noise: torch.FloatTensor,
|
| 1078 |
-
timesteps: torch.IntTensor,
|
| 1079 |
-
) -> torch.FloatTensor:
|
| 1080 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
| 1081 |
-
alphas_cumprod = self.alphas_cumprod.to(
|
| 1082 |
-
device=sample.device, dtype=sample.dtype
|
| 1083 |
-
)
|
| 1084 |
-
timesteps = timesteps.to(sample.device)
|
| 1085 |
-
|
| 1086 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
| 1087 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
| 1088 |
-
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
| 1089 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
| 1090 |
-
|
| 1091 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
| 1092 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
| 1093 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
| 1094 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
| 1095 |
-
|
| 1096 |
-
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
| 1097 |
-
return velocity
|
| 1098 |
-
|
| 1099 |
-
def __len__(self):
|
| 1100 |
-
return self.config.num_train_timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipelines/controlnet.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
| 1 |
-
from diffusers import
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
from compel import Compel
|
| 5 |
import torch
|
|
|
|
| 6 |
|
| 7 |
try:
|
| 8 |
import intel_extension_for_pytorch as ipex # type: ignore
|
|
@@ -11,80 +14,202 @@ except:
|
|
| 11 |
|
| 12 |
import psutil
|
| 13 |
from config import Args
|
| 14 |
-
from pydantic import BaseModel
|
| 15 |
from PIL import Image
|
| 16 |
-
from typing import Callable
|
| 17 |
|
| 18 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
class Pipeline:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
class InputParams(BaseModel):
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
if args.safety_checker:
|
| 39 |
-
pipe =
|
|
|
|
|
|
|
| 40 |
else:
|
| 41 |
-
pipe =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
if args.use_taesd:
|
| 43 |
-
pipe.vae = AutoencoderTiny.from_pretrained(
|
| 44 |
-
|
| 45 |
)
|
| 46 |
-
|
| 47 |
-
pipe.set_progress_bar_config(disable=True)
|
| 48 |
-
pipe.to(device=device, dtype=torch_dtype)
|
| 49 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
| 50 |
|
| 51 |
# check if computer has less than 64GB of RAM using sys or os
|
| 52 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 53 |
-
pipe.enable_attention_slicing()
|
| 54 |
|
| 55 |
if args.torch_compile:
|
| 56 |
-
pipe.unet = torch.compile(
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
compel_proc = Compel(
|
| 62 |
-
tokenizer=pipe.tokenizer,
|
| 63 |
-
text_encoder=pipe.text_encoder,
|
| 64 |
truncate_long_prompts=False,
|
| 65 |
)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
return
|
|
|
|
| 1 |
+
from diffusers import (
|
| 2 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
| 3 |
+
AutoencoderTiny,
|
| 4 |
+
ControlNetModel,
|
| 5 |
+
)
|
| 6 |
from compel import Compel
|
| 7 |
import torch
|
| 8 |
+
from pipelines.utils.canny_gpu import SobelOperator
|
| 9 |
|
| 10 |
try:
|
| 11 |
import intel_extension_for_pytorch as ipex # type: ignore
|
|
|
|
| 14 |
|
| 15 |
import psutil
|
| 16 |
from config import Args
|
| 17 |
+
from pydantic import BaseModel, Field
|
| 18 |
from PIL import Image
|
|
|
|
| 19 |
|
| 20 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
| 21 |
+
taesd_model = "madebyollin/taesd"
|
| 22 |
+
controlnet_model = "lllyasviel/control_v11p_sd15_canny"
|
| 23 |
+
|
| 24 |
+
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
| 25 |
|
| 26 |
|
| 27 |
class Pipeline:
|
| 28 |
+
class Info(BaseModel):
|
| 29 |
+
name: str = "txt2img"
|
| 30 |
+
description: str = "Generates an image from a text prompt"
|
| 31 |
+
|
| 32 |
class InputParams(BaseModel):
|
| 33 |
+
prompt: str = Field(
|
| 34 |
+
default_prompt,
|
| 35 |
+
title="Prompt",
|
| 36 |
+
field="textarea",
|
| 37 |
+
id="prompt",
|
| 38 |
+
)
|
| 39 |
+
seed: int = Field(
|
| 40 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 41 |
+
)
|
| 42 |
+
steps: int = Field(
|
| 43 |
+
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
| 44 |
+
)
|
| 45 |
+
width: int = Field(
|
| 46 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
| 47 |
+
)
|
| 48 |
+
height: int = Field(
|
| 49 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
| 50 |
+
)
|
| 51 |
+
guidance_scale: float = Field(
|
| 52 |
+
0.2,
|
| 53 |
+
min=0,
|
| 54 |
+
max=2,
|
| 55 |
+
step=0.001,
|
| 56 |
+
title="Guidance Scale",
|
| 57 |
+
field="range",
|
| 58 |
+
hide=True,
|
| 59 |
+
id="guidance_scale",
|
| 60 |
+
)
|
| 61 |
+
strength: float = Field(
|
| 62 |
+
0.5,
|
| 63 |
+
min=0.25,
|
| 64 |
+
max=1.0,
|
| 65 |
+
step=0.001,
|
| 66 |
+
title="Strength",
|
| 67 |
+
field="range",
|
| 68 |
+
hide=True,
|
| 69 |
+
id="strength",
|
| 70 |
+
)
|
| 71 |
+
controlnet_scale: float = Field(
|
| 72 |
+
0.8,
|
| 73 |
+
min=0,
|
| 74 |
+
max=1.0,
|
| 75 |
+
step=0.001,
|
| 76 |
+
title="Controlnet Scale",
|
| 77 |
+
field="range",
|
| 78 |
+
hide=True,
|
| 79 |
+
id="controlnet_scale",
|
| 80 |
+
)
|
| 81 |
+
controlnet_start: float = Field(
|
| 82 |
+
0.0,
|
| 83 |
+
min=0,
|
| 84 |
+
max=1.0,
|
| 85 |
+
step=0.001,
|
| 86 |
+
title="Controlnet Start",
|
| 87 |
+
field="range",
|
| 88 |
+
hide=True,
|
| 89 |
+
id="controlnet_start",
|
| 90 |
+
)
|
| 91 |
+
controlnet_end: float = Field(
|
| 92 |
+
1.0,
|
| 93 |
+
min=0,
|
| 94 |
+
max=1.0,
|
| 95 |
+
step=0.001,
|
| 96 |
+
title="Controlnet End",
|
| 97 |
+
field="range",
|
| 98 |
+
hide=True,
|
| 99 |
+
id="controlnet_end",
|
| 100 |
+
)
|
| 101 |
+
canny_low_threshold: float = Field(
|
| 102 |
+
0.31,
|
| 103 |
+
min=0,
|
| 104 |
+
max=1.0,
|
| 105 |
+
step=0.001,
|
| 106 |
+
title="Canny Low Threshold",
|
| 107 |
+
field="range",
|
| 108 |
+
hide=True,
|
| 109 |
+
id="canny_low_threshold",
|
| 110 |
+
)
|
| 111 |
+
canny_high_threshold: float = Field(
|
| 112 |
+
0.125,
|
| 113 |
+
min=0,
|
| 114 |
+
max=1.0,
|
| 115 |
+
step=0.001,
|
| 116 |
+
title="Canny High Threshold",
|
| 117 |
+
field="range",
|
| 118 |
+
hide=True,
|
| 119 |
+
id="canny_high_threshold",
|
| 120 |
+
)
|
| 121 |
+
debug_canny: bool = Field(
|
| 122 |
+
False,
|
| 123 |
+
title="Debug Canny",
|
| 124 |
+
field="checkbox",
|
| 125 |
+
hide=True,
|
| 126 |
+
id="debug_canny",
|
| 127 |
+
)
|
| 128 |
+
image: bool = True
|
| 129 |
+
|
| 130 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
| 131 |
+
controlnet_canny = ControlNetModel.from_pretrained(
|
| 132 |
+
controlnet_model, torch_dtype=torch_dtype
|
| 133 |
+
).to(device)
|
| 134 |
if args.safety_checker:
|
| 135 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 136 |
+
base_model, controlnet=controlnet_canny
|
| 137 |
+
)
|
| 138 |
else:
|
| 139 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 140 |
+
base_model,
|
| 141 |
+
safety_checker=None,
|
| 142 |
+
controlnet=controlnet_canny,
|
| 143 |
+
)
|
| 144 |
if args.use_taesd:
|
| 145 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 146 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 147 |
)
|
| 148 |
+
self.canny_torch = SobelOperator(device=device)
|
| 149 |
+
self.pipe.set_progress_bar_config(disable=True)
|
| 150 |
+
self.pipe.to(device=device, dtype=torch_dtype)
|
| 151 |
+
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 152 |
|
| 153 |
# check if computer has less than 64GB of RAM using sys or os
|
| 154 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 155 |
+
self.pipe.enable_attention_slicing()
|
| 156 |
|
| 157 |
if args.torch_compile:
|
| 158 |
+
self.pipe.unet = torch.compile(
|
| 159 |
+
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
| 160 |
+
)
|
| 161 |
+
self.pipe.vae = torch.compile(
|
| 162 |
+
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
| 163 |
+
)
|
| 164 |
|
| 165 |
+
self.pipe(
|
| 166 |
+
prompt="warmup",
|
| 167 |
+
image=[Image.new("RGB", (768, 768))],
|
| 168 |
+
control_image=[Image.new("RGB", (768, 768))],
|
| 169 |
+
)
|
| 170 |
|
| 171 |
+
self.compel_proc = Compel(
|
| 172 |
+
tokenizer=self.pipe.tokenizer,
|
| 173 |
+
text_encoder=self.pipe.text_encoder,
|
| 174 |
truncate_long_prompts=False,
|
| 175 |
)
|
| 176 |
|
| 177 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 178 |
+
generator = torch.manual_seed(params.seed)
|
| 179 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
| 180 |
+
control_image = self.canny_torch(
|
| 181 |
+
params.image, params.canny_low_threshold, params.canny_high_threshold
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
results = self.pipe(
|
| 185 |
+
image=params.image,
|
| 186 |
+
control_image=control_image,
|
| 187 |
+
prompt_embeds=prompt_embeds,
|
| 188 |
+
generator=generator,
|
| 189 |
+
strength=params.strength,
|
| 190 |
+
num_inference_steps=params.steps,
|
| 191 |
+
guidance_scale=params.guidance_scale,
|
| 192 |
+
width=params.width,
|
| 193 |
+
height=params.height,
|
| 194 |
+
output_type="pil",
|
| 195 |
+
controlnet_conditioning_scale=params.controlnet_scale,
|
| 196 |
+
control_guidance_start=params.controlnet_start,
|
| 197 |
+
control_guidance_end=params.controlnet_end,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
nsfw_content_detected = (
|
| 201 |
+
results.nsfw_content_detected[0]
|
| 202 |
+
if "nsfw_content_detected" in results
|
| 203 |
+
else False
|
| 204 |
+
)
|
| 205 |
+
if nsfw_content_detected:
|
| 206 |
+
return None
|
| 207 |
+
result_image = results.images[0]
|
| 208 |
+
if params.debug_canny:
|
| 209 |
+
# paste control_image on top of result_image
|
| 210 |
+
w0, h0 = (200, 200)
|
| 211 |
+
control_image = control_image.resize((w0, h0))
|
| 212 |
+
w1, h1 = result_image.size
|
| 213 |
+
result_image.paste(control_image, (w1 - w0, h1 - h0))
|
| 214 |
|
| 215 |
+
return result_image
|
pipelines/txt2img.py
CHANGED
|
@@ -11,7 +11,6 @@ import psutil
|
|
| 11 |
from config import Args
|
| 12 |
from pydantic import BaseModel, Field
|
| 13 |
from PIL import Image
|
| 14 |
-
from typing import Callable
|
| 15 |
|
| 16 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
| 17 |
taesd_model = "madebyollin/taesd"
|
|
@@ -29,22 +28,19 @@ class Pipeline:
|
|
| 29 |
default_prompt,
|
| 30 |
title="Prompt",
|
| 31 |
field="textarea",
|
|
|
|
| 32 |
)
|
| 33 |
-
seed: int = Field(
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
max=
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
hide=True,
|
| 42 |
)
|
| 43 |
-
|
| 44 |
-
steps: int = Field(4, min=2, max=15, title="Steps", field="range", hide=True)
|
| 45 |
-
width: int = Field(512, min=2, max=15, title="Width", disabled=True, hide=True)
|
| 46 |
height: int = Field(
|
| 47 |
-
512, min=2, max=15, title="Height", disabled=True, hide=True
|
| 48 |
)
|
| 49 |
guidance_scale: float = Field(
|
| 50 |
8.0,
|
|
@@ -54,6 +50,10 @@ class Pipeline:
|
|
| 54 |
title="Guidance Scale",
|
| 55 |
field="range",
|
| 56 |
hide=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
)
|
| 58 |
|
| 59 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
|
|
|
| 11 |
from config import Args
|
| 12 |
from pydantic import BaseModel, Field
|
| 13 |
from PIL import Image
|
|
|
|
| 14 |
|
| 15 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
| 16 |
taesd_model = "madebyollin/taesd"
|
|
|
|
| 28 |
default_prompt,
|
| 29 |
title="Prompt",
|
| 30 |
field="textarea",
|
| 31 |
+
id="prompt",
|
| 32 |
)
|
| 33 |
+
seed: int = Field(
|
| 34 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 35 |
+
)
|
| 36 |
+
steps: int = Field(
|
| 37 |
+
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
| 38 |
+
)
|
| 39 |
+
width: int = Field(
|
| 40 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
|
| 41 |
)
|
|
|
|
|
|
|
|
|
|
| 42 |
height: int = Field(
|
| 43 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
| 44 |
)
|
| 45 |
guidance_scale: float = Field(
|
| 46 |
8.0,
|
|
|
|
| 50 |
title="Guidance Scale",
|
| 51 |
field="range",
|
| 52 |
hide=True,
|
| 53 |
+
id="guidance_scale",
|
| 54 |
+
)
|
| 55 |
+
image: bool = Field(
|
| 56 |
+
True, title="Image", field="checkbox", hide=True, id="image"
|
| 57 |
)
|
| 58 |
|
| 59 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
canny_gpu.py → pipelines/utils/canny_gpu.py
RENAMED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
diffusers
|
| 2 |
transformers==4.34.1
|
| 3 |
gradio==3.50.2
|
| 4 |
--extra-index-url https://download.pytorch.org/whl/cu121;
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/diffusers@c697f524761abd2314c030221a3ad2f7791eab4e
|
| 2 |
transformers==4.34.1
|
| 3 |
gradio==3.50.2
|
| 4 |
--extra-index-url https://download.pytorch.org/whl/cu121;
|
user_queue.py
CHANGED
|
@@ -1,18 +1,29 @@
|
|
| 1 |
from typing import Dict, Union
|
| 2 |
from uuid import UUID
|
| 3 |
-
|
| 4 |
from PIL import Image
|
| 5 |
-
from typing import
|
| 6 |
-
from uuid import UUID
|
| 7 |
-
from asyncio import Queue
|
| 8 |
from PIL import Image
|
| 9 |
|
|
|
|
| 10 |
UserId = UUID
|
|
|
|
| 11 |
|
| 12 |
-
InputParams = dict
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
UserQueueDict = Dict[UserId, Queue[QueueContent]]
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
| 1 |
from typing import Dict, Union
|
| 2 |
from uuid import UUID
|
| 3 |
+
import asyncio
|
| 4 |
from PIL import Image
|
| 5 |
+
from typing import Dict, Union
|
|
|
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
+
InputParams = dict
|
| 9 |
UserId = UUID
|
| 10 |
+
EventDataContent = Dict[str, InputParams]
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
+
class UserDataEvent:
|
| 14 |
+
def __init__(self):
|
| 15 |
+
self.data_event = asyncio.Event()
|
| 16 |
+
self.data_content: EventDataContent = {}
|
| 17 |
+
|
| 18 |
+
def update_data(self, new_data: EventDataContent):
|
| 19 |
+
self.data_content = new_data
|
| 20 |
+
self.data_event.set()
|
| 21 |
+
|
| 22 |
+
async def wait_for_data(self) -> EventDataContent:
|
| 23 |
+
await self.data_event.wait()
|
| 24 |
+
self.data_event.clear()
|
| 25 |
+
return self.data_content
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
+
UserDataEventMap = Dict[UserId, UserDataEvent]
|
| 29 |
+
user_data_events: UserDataEventMap = {}
|